在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2025, Vol. 42 ›› Issue (5): 949-962.doi: 10.3969/j.issn.1005-3085.2025.05.011cstr: 32411.14.cjem.CN61-1269/O1.2025.05.011

• • 上一篇    下一篇

带固定效应半变系数面板数据模型的约束估计

何帮强,  赵  瑞   

  1. 安徽工程大学数理学院,芜湖 241000
  • 收稿日期:2023-01-31 接受日期:2023-08-21 出版日期:2025-10-15 发布日期:2025-12-15
  • 基金资助:
    国家社会科学基金 (18BTJ034).

Restricted Estimation for Semi-varying Coefficient Panel Data Models with Fixed Effects

HE Bangqiang,  ZHAO Rui   

  1. School of Mathematics and Finance, Anhui Polytechnic University, Wuhu 241000
  • Received:2023-01-31 Accepted:2023-08-21 Online:2025-10-15 Published:2025-12-15
  • Supported by:
    The National Social Science Foundation of China (18BTJ034).

摘要:

研究了带固定效应的半变系数面板数据模型在线性约束下的统计推断问题。该模型利用固定效应控制个体间时不变差异,同时通过变系数函数捕捉协变量与响应变量非线性关联,克服了传统参数模型灵活性不足与非参数模型“维数灾祸”的局限,并为经济结构假设、政策干预条件等实际常见的约束提供理论支持。研究首先基于约束Profile最小二乘法构建参数和非参数光滑系数函数的无约束估计量;其次,通过引入个体虚拟变量分离固定效应,消除其对被解释变量的影响;最后,结合线性约束条件,利用拉格朗日乘子法构造出参数、非参数函数及误差方差的约束估计量。在正则条件下,严格证明了这三个约束估计量均具渐近正态性。蒙特卡洛模拟表明:有限样本下约束估计显著提升了参数估计精度,且当固定效应与协变量相关性增强时,其稳健性优势更为显著。

关键词: 半变系数面板数据模型, 约束条件, Profile最小二乘法, 固定效应

Abstract:

This paper investigates statistical inference for semi-varying coefficient panel data models with fixed effects subject to linear restrictions. By incorporating fixed effects to control for time-invariant heterogeneity across individuals and employing varying coefficient functions to capture nonlinear covariate-response associations, the model mitigates two key limitations: inflexibility in traditional parametric models and the curse of dimensionality in nonparametric models. It further provides theoretical support for empirically prevalent linear restrictions such as economic structural hypotheses and policy intervention conditions. The study first establishes unrestricted estimators for parametric and nonparametric smooth coefficient functions via restricted profile least squares. Subsequently, individual dummy variables are introduced to isolate fixed effects, thereby eliminating their impact on the dependent variable. Finally, linear restrictions are imposed to derive restricted estimators for parameters, nonparametric functions, and error variances using the Lagrange multiplier method. Under regularity conditions, the restricted estimators for parameters, nonparametric functions, and error variance are rigorously proven to exhibit asymptotic normality. Monte Carlo simulations demonstrate that restricted estimation significantly enhances parameter estimation accuracy in finite samples. Moreover, when the correlation between fixed effects and covariates intensifies, the robustness advantages of restricted estimation become more pronounced.

Key words: semi-varying coefficient panel data models, restricted condition, Profile least square method, fixed effect

中图分类号: