在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报

• • 上一篇    下一篇

符号矩阵填充的修正增广拉格朗日乘子算法

王俊霞,   申倩影,   王川龙   

  1. 太原师范学院数学系,晋中  030619
  • 收稿日期:2019-12-09 接受日期:2020-07-28 出版日期:2021-06-15 发布日期:2021-08-15
  • 基金资助:
    国家自然科学基金 (11371275);山西省自然科学基金 (201801D121022);太原师范学院教改项目 (JGLX1932).

The Augmented Lagrange Multiplier Algorithm for Sign Matrix Completion

WANG Jun-xia,   SHEN Qian-ying,   WANG Chuan-long   

  1. Department of Mathematics, Taiyuan Normal University, Jinzhong 030619
  • Received:2019-12-09 Accepted:2020-07-28 Online:2021-06-15 Published:2021-08-15
  • Supported by:
    The National Natural Science Foundation of China (11371275); the Natural Science Foundation of Shanxi Province (201801D121022); the Teaching Reform Project of Taiyuan Normal University (JGLX1932).

摘要: 矩阵填充问题是近年来的研究热点之一,特别地,符号矩阵填充问题在生物医学等领域有着很好的应用前景.本文以奇异值阈值方法为基础,针对符号矩阵填充提出了修正的增广Lagrange乘子法.修正算法对每步产生的阈值矩阵进行符号投影,形成新的符号矩阵,构成在符号矩阵离散集合上的迭代.同时证明了在合理条件下,当罚因子充分大时,修正算法是收敛的.最后通过数值实验与传统的增广Lagrange乘子算法和遗传算法做对比,新算法在时间和误差上具有很强的优越性.

关键词: 矩阵填充, 符号矩阵, 增广Lagrange乘子算法, 遗传算法

Abstract: Matrix completion is one of research hotspots in recent years. Especially, the problem of sign matrix completion has wide applications in fields such as biomedical. In this paper, based on the singular value threshold algorithm, we propose a modified augmented Lagrange multiplier algorithm for sign matrix completion. The threshold matrix generated at each step of the modified algorithm is projected to form a new sign matrix, which forms an iteration on the discrete set of sign matrices. Meanwhile, we prove that under the reasonable conditions, the modified algorithm converges when the penalty factor is large enough. Finally, the numerical examples show that compared with the augmented Lagrange multiplier algorithm and the genetic algorithm, the modified algorithm has obvious advantages in terms of time and error.

Key words: matrix completion, sign matrix, augmented Lagrange algorithm, genetic algorithm

中图分类号: