在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

一类具有阶段结构和饱和发生率的生态流行病模型的稳定性

展开
  • 河北经贸大学数学与统计学学院,石家庄  050061

收稿日期: 2017-05-09

  录用日期: 2017-10-10

  网络出版日期: 2017-10-10

基金资助

国家自然科学基金(11371368);河北省教育厅科学技术研究项目(ZD2018052);河北经贸大学基金(2015KYQ01).

Stability of an Eco-epidemiological Model with Stage Structure and Saturation Incidence

Expand
  • School of Mathematics and Statistics, Hebei University of Economics & Business, Shijiazhuang 050061

Received date: 2017-05-09

  Accepted date: 2017-10-10

  Online published: 2017-10-10

Supported by

The National Natural Science Foundation of China (11371368); the Scientific Research Foundation of Hebei Education Department (ZD2018052); the Foundation of Hebei University of Economics & Business (2015KYQ01).

摘要

本文研究一类食饵具有阶段结构且捕食者染病的具有饱和发生率的捕食者-食饵模型的稳定性及其Hopf分支,讨论了由疾病的潜伏期引起的时滞对种群动力学性态的影响.通过分析特征方程,运用Hurwitz判定定理,讨论了该模型边界平衡点和正平衡点的局部稳定性,并得到了Hopf分支存在的充分条件;通过构造适当的Lyapunov泛函,运用LaSall不变集原理,讨论了该模型边界平衡点和正平衡点的全局稳定性,从而得到了疾病流行而最终形成地方病及消灭的充分条件.

本文引用格式

王玲书, 张雅南, 苏 欢 . 一类具有阶段结构和饱和发生率的生态流行病模型的稳定性[J]. 工程数学学报, 2019 , 36(4) : 406 -418 . DOI: 10.3969/j.issn.1005-3085.2019.04.004

Abstract

In this paper, an eco-epidemiological predator-prey model with saturation incidence and stage structure for the prey is investigated. A time delay describing the latent period of the disease in this model is discussed. By analyzing the characteristic equations, the local stability of the boundary equilibria and the positive equilibrium is established, respectively. Moreover, it is proved that the system undergoes a Hopf bifurcation at the positive equilibrium. By using Lyapunov functions and the LaSalle's invariance principle, the global stability of the boundary equilibria and the positive equilibrium is addressed, respectively. Therefore, the sufficient conditions are given for the disease extinction and permanence of the model.
文章导航

/