Association Journal of CSIAM
Supervised by Ministry of Education of PRC
Sponsored by Xi'an Jiaotong University
ISSN 1005-3085  CN 61-1269/O1

Chinese Journal of Engineering Mathematics

Previous Articles    

Pricing European Discretely Monitored Barrier Options in Multidimensional Stochastic Volatility Model

CHEN Youjie1,  WEN Xiaomei2,  HUANG Qing3,  DENG Guohe4   

  1. 1. School of Management, Guangdong University of Technology, Guangzhou 510006
    2. Department of Mathematics, Guilin Institute of Information Technology, Guilin 541004
    3. College of Science, Beibu Gulf University, Qinzhou 535011
    4. School of Mathematics and Statistics, Guangxi Normal University, Guilin 541004
  • Received:2022-07-27 Accepted:2023-02-26 Published:2025-06-15
  • Contact: G. Deng. E-mail address: dengguohe@gxnu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China (11461008);the Project for Enhancing the Basic Scientific Research Capacity of Young and Middle-aged Teachers in Guangxi Colleges and Universities (2022KY1633).

Abstract:

As one of the most common and important financial derivatives, options are the core tools of risk management, and how to price options is naturally an important issue. In this paper, the pricing of European barrier options for discrete time scenarios under the model of Wishart multidimensional stochastic volatility is discussed. Using some stochastic analysis techniques and mathematical induction, such as the semi-martingale It\^o formula, multidimensional federated characteristic functions, Girsanov theorem and Fourier inverse transform technique are to derive the pricing formula for the European discrete barrier call option. And derive the discrete fast Fourier transform (FFT) method to implement the pricing formula for the option. Finally, numerical examples are given, and the variation of the implicit volatility curve of options under different volatility parameters is also analyzed by this numerical examples, the results show that the diffusion factor has a significant impact on the price of options.

Key words: Wishart model, barrier option, Fourier inverse transform, FFT

CLC Number: