在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2020, Vol. 37 ›› Issue (3): 370-390.doi: 10.3969/j.issn.1005-3085.2020.03.010

• • 上一篇    

基于对偶理论的椭圆变分不等式的后验误差分析(英)

何莉敏1,2,  王  娟1,  侯玉双1,3   

  1. 1- 内蒙古科技大学理学院,包头 014010
    2- 西安交通大学数学与统计学院,西安 710049
    3- 西南大学物理科学与技术学院,重庆 400715
  • 收稿日期:2018-01-10 接受日期:2018-06-07 出版日期:2020-06-15 发布日期:2020-08-15
  • 基金资助:
    国家自然科学基金(11801287; 61663035);内蒙古自治区自然科学基金(2018BS01002; 2018MS06017; NJZZ18140).

A Posteriori Error Analysis for Elliptic Variational Inequalities Based on Duality Theory

HE Li-min1,2,  WANG Juan1,  HOU Yu-shuang1,3   

  1. 1- School of Science, Inner Mongolia University of Science and Technology, Baotou 014010
    2- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049
    3- School of Physical Science and Technology, Southwest University, Chongqing 400715
  • Received:2018-01-10 Accepted:2018-06-07 Online:2020-06-15 Published:2020-08-15
  • Supported by:
    The National Natural Science Foundation of China (11801287; 61663035); the Natural Science Foundation of Inner Mongolia (2018BS01002; 2018MS06017; NJZZ18140).

摘要: 本文基于对偶理论对椭圆变分不等式的正则化方法提供一个相对全面的后验误差分析.我们分别考虑了摩擦接触问题和障碍问题,通过选取一种不同形式的有界算子和泛函,推导了其对偶形式并给出了正则化方法的 $H^1$ 范后验误差估计.最后,利用凸分析中的对偶理论建立了障碍问题的残量型后验误差估计的一般框架.同时我们选取一种特殊的对偶变量和泛函形式得到该问题的残量型误差估计及其有效性.数值解的后验误差估计是发展有效自适应算法的基础而模型误差的后验误差估计在分析问题中数据的不确定影响时是非常有用的.

关键词: 后验误差估计, 正则化方法, 椭圆变分不等式, 有效性, 对偶理论

Abstract: In this paper, we provide a relatively complete a posteriori error analysis for the regularization method via duality theory for elliptic variational inequalities. The model problems considered in the paper are a friction contact problem and an obstacle problem, respectively. Choosing a different bounded operator form and a functional form, we perform their dual formations and give an $H^1$-norm a posteriori error estimation based on the regularization method which is usually used in solving non-differentiable minimization problems. A posteriori error estimates, with residual type for an obstacle problem in the general framework, is established by using duality theory in convex analysis. At the same time, we make a particular choice of the dual variable that leads to a residual-based error estimate of the model problem and its efficiency. A posteriori error estimates for numerical solutions are the basis for developing efficient adaptive algorithms, whereas a posteriori estimates for modeling errors are useful for analyzing the effects of uncertainties in problem data on the solution.

Key words: a posteriori error estimation, regularization method, elliptic variational inequality; efficiency, dual theory

中图分类号: