在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报

• • 上一篇    下一篇

求解非线性方程组的Newton型方法研究

徐   浩1,2,   司智勇1   

  1. 1- 河南理工大学数学与信息科学学院,焦作  454000 2- 燕山大学信息科学与工程学院,秦皇岛  066000
  • 收稿日期:2018-09-05 接受日期:2019-02-27 出版日期:2021-06-15 发布日期:2021-08-15
  • 基金资助:
    中国博士后基金 (2018M630907);河南省高等学校重点研究项目 (19B110007).

Newton Type Iteration Methods for Solving Nonlinear Equations

XU Hao1,2,   SI Zhi-yong1   

  1. 1- School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000
    2- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066000
  • Received:2018-09-05 Accepted:2019-02-27 Online:2021-06-15 Published:2021-08-15
  • Supported by:
    The China Postdoctoral Science Foundation (2018M630907); the Key Scientific Research Project of Henan Colleges and Universities (19B110007).

摘要: Newton迭代法是求解非线性方程组的重要方法,目前使用的很多其他类型的迭代法都是以Newton迭代法为基础,在其上延伸与拓展之后得到的.但是这种方法仅仅利用了迭代点及Jacobi矩阵的性质,没有充分利用其他点及其Jacobi矩阵的信息.本文利用多重迭代的思想对求解非线性方程组的Newton法进行改进,并结合修正Newton迭代法、简化Newton迭代法对算法进行改进,得到四种新型的求解非线性方程组的Newton型迭代方法.对算法进行严格的理论分析表明这四种Newton型迭代法都是收敛的.为了说明算法的有效性,我们给出了一些数值实验结果,数值结果表明四种方法均具有较快的收敛速度,说明文中提出的算法是有效的.

关键词: Newton型迭代法, 修正Newton法, 非线性方程组, 收敛性

Abstract: The Newton iteration method is an important method for solving nonlinear equations. Many other types of iterative methods currently used are based on the Newton iteration method after some extension and expansion. But in these methods, only the properties of the current iteration point and the Jacobi matrix are used, the information about other points and corresponding Jacobi matrices are not fully utilized. In this paper, we use the idea of multiple iterations to improve the Newton iteration method for solving nonlinear equations, and combines the modified Newton iteration method and simplified Newton iteration method to improve the algorithm. We obtain four new types of Newton-type iteration methods for solving nonlinear equations. Rigorous theoretical analyses show that these four Newton-type iterative methods are all convergent. In order to show the effectiveness of proposed algorithms, we present some numerical experimental results. The numerical results show that the four methods all have a fast convergence rate, indicating their efficiency.

Key words: Newton type iteration method, modified Newton method, nonlinear equations, convergence

中图分类号: