在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2021, Vol. 38 ›› Issue (4): 483-489.doi: 10.3969/j.issn.1005-3085.2021.04.003

• • 上一篇    下一篇

高铁接触网吊弦故障检测方法

张学武   

  1. 中铁第一勘察设计院集团有限公司,西安  710043
  • 收稿日期:2021-06-15 接受日期:2021-07-16 出版日期:2021-08-15 发布日期:2021-10-15
  • 基金资助:
    中国铁建股份有限公司2018年度科技重大专项 (18-A02).

Fault Detection Methods for Catenary Dropper of High-speed Railway

ZHANG Xue-wu   

  1. China Railway First Survey and Design Institute Group Co., Ltd., Xi'an 710043
  • Received:2021-06-15 Accepted:2021-07-16 Online:2021-08-15 Published:2021-10-15
  • Supported by:
    China Railway Construction Corporation 2018 Major Science and Technology Special Project (18-A02).

摘要: 吊弦是高铁接触网系统的主要部件,容易发生断裂和松弛,直接威胁行车安全.在脉动风和受电弓同时作用下,安装于承力索和接触线上的加速度传感器所获取的加速度信号特征比较明显,应用LSTM网络模型,吊弦断裂和松弛故障容易检测.本文针对仅脉动风作用下,加速度信号特征微弱,吊弦故障难以检测问题,利用卷积神经网络强大的特征提取能力和循环神经网络的时序表达能力,同时引进注意力机制,建立CNN-LSTM和CNN-LSTM-Attention融合网络模型,并在网络训练过程中使用贝叶斯优化方法进行超参数选择.实验结果表明,相比LSTM模型,融合网络模型大大提高了吊弦故障检测的准确率,具有很强的实用性.

关键词: 接触网吊弦, 故障检测, 卷积神经网络, 长短期记忆网络, 注意力机制

Abstract: The droppers are the main components of the high-speed railway catenary system. They are prone to fracture and relaxation, which directly threatens the safety of driving. Under the action of fluctuating wind and pantograph simultaneously, the acceleration signals obtained by the acceleration sensors installed on the messenger wire and contact line are relatively strong. Using the LSTM network model, it is easy to predict the fracture and relaxation of the droppers. In this paper, the strong feature extraction ability of the convolutional neural network and the time sequence expression ability of recurrent neural network are used to solve the problem of the detection of dropper fault under the action of fluctuating wind only. At the same time, the attention mechanism is introduced to establish the fusion network model of CNN-LSTM-Attention. In the process of network training, the Bayesian optimisation method is used to select hyperparameter. Compared with the LSTM model, the fusion network model improves the detection accuracy of dropper fault and has strong practicability.

Key words: catenary dropper, fault detection, convolutional neural networks, LSTM, attention mechanism

中图分类号: