在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2021, Vol. 38 ›› Issue (4): 513-521.doi: 10.3969/j.issn.1005-3085.2021.04.006

• • 上一篇    下一篇

过采样技术下Shannon采样重构的任意慢收敛

武   瑛1,   高萌瑶2,   张雪林2   

  1. 1- 西安科技大学理学院,西安  710054 2- 陕西师范大学数学与统计学院,西安  710062
  • 收稿日期:2019-07-01 接受日期:2019-12-30 出版日期:2021-08-15 发布日期:2021-10-15
  • 通讯作者: 武 瑛 E-mail: wuyingxust@gmail.com
  • 基金资助:
    国家自然科学基金 (61603235);陕西省自然科学基础研究项目 (2018JQ1032);陕西省教育厅科研计划项目 (14JK1461).

Arbitrary Slow Convergence of Shannon Sampling Reconstruction with Oversampling Technique

WU Ying1,   GAO Meng-yao2,   ZHANG Xue-lin2   

  1. 1- School of Science, Xi'an University of Science and Technology, Xi'an 710054 2- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710062
  • Received:2019-07-01 Accepted:2019-12-30 Online:2021-08-15 Published:2021-10-15
  • Contact: Y. Wu. E-mail address: wuyingxust@gmail.com
  • Supported by:
    The National Natural Science Foundation of China (61603235); the Natural Science Basic Research Program of Shaanxi Province (2018JQ1032); the Science Program of Education Department of Shaanxi Province (14JK1461).

摘要: Shannon采样定理是信号处理的重要结论.该定理表明,带限信号可以通过在Nyuist采样率下得到的样本精确重构.从理论的角度,研究Shannon采样下的重构收敛速率有重要意义.本文根据算子列的慢收敛理论研究了Shannon重构的收敛速率,并证明了Shannon重构包含一个“任意慢”收敛算子列.具体地,对于任意正数列$\alpha (n)\to 0$,总存在一个带限信号$f$,使得其主级数的$n$阶截断误差比$\alpha(n)$大,其中截断误差用$L_p(1<p<\infty)$范数衡量.此外,本文还证明了,常用的加速技术---过采样和收敛因子不会改善重构算子列的慢收敛速率,其收敛速度依然是“任意慢”.

关键词: Shannon重构, 慢收敛, 过采样

Abstract: Shannon sampling theorem is an important conclusion in signal processing. It states that the exact reconstruction of a bandlimited signal can be obtained from its samples at Nyquist rate by the cardinal series. It is of theoretical interest to study the convergence rate of the reconstruction of Shannon sampling. In this work, the convergence rate of Shannon's reconstruction is analysed by using the theory on the slow convergence of operator sequences. It is provided that Shannon's reconstruction consists of a sequence of ``arbitrarily slow" convergent operators. Specifically, for any positive sequence $\alpha(n)\to 0$, there exists a bandlimited signal $f$ such that the $n$-th truncation error of its cardinal series is larger than $\alpha(n)$ for all $n$, where the truncation errors are measured in $L^p$ norms, for $1<p<\infty$. It is also shown that the acceleration techniques by over-sampling and convergence factor do not resolve the slowness, which is still ``arbitrarily slowly".

Key words: Shannon reconstruction, slow convergence, over-sampling

中图分类号: