在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2021, Vol. 38 ›› Issue (4): 539-552.doi: 10.3969/j.issn.1005-3085.2021.04.008

• • 上一篇    下一篇

变系数空间自回归模型的Bootstrap检验

杜   颖1,   李体政2   

  1. 1- 西安外国语大学经济金融学院,西安 710128 2- 西安建筑科技大学理学院,西安 710055
  • 收稿日期:2019-12-02 接受日期:2020-11-06 出版日期:2021-08-15 发布日期:2021-10-15
  • 基金资助:
    国家自然科学基金 (11671317).

A Bootstrap Test for the Varying Coefficient Spatial Autoregressive Models

DU Ying1,   LI Ti-zheng2   

  1. 1- School of Finance and Economics, Xi'an International Studies University, Xi'an 710128
    2- School of Science, Xi'an University of Architecture and Technology, Xi'an 710055
  • Received:2019-12-02 Accepted:2020-11-06 Online:2021-08-15 Published:2021-10-15
  • Supported by:
    The National Natural Science Foundation of China (11671317).

摘要: 变系数空间自回归模型是变系数模型在空间数据分析方面的推广,因其众多的应用背景而得到广泛的重视和研究,确认模型中系数是否真正随变量的变化而变化是应用变系数空间自回归模型需解决的首要问题.本文基于Bootstrap检验方法研究了变系数空间自回归模型中的常系数项的辨别问题,为建立半变系数空间自回归模型提供依据.最后,通过模拟试验验证Bootstrap检验方法在有限样本容量下的有效性.数值模拟分别考察了误差项服从不同分布、空间滞后相关系数变化以及解释变量共线性程度不同时,Bootstrap方法逼近其零分布的准确性以及检验的功效.模拟结果表明本文所提出的Bootstrap方法能精确地逼近检验统计量的零分布且检验具有满意的功效.

关键词: 变系数空间自回归模型, Bootstrap检验, 常系数, 空间相关性

Abstract: The varying coefficient spatial autoregressive model is a generalisation of a varying coefficient model in spatial data analysis. It has been widely valued and studied because of its many application backgrounds. To apply the models, the first problem is to confirm whether the coefficients in the model change with respect to a variable. Based on the Bootstrap test, the identification of constant-coefficient terms in the varying coefficient spatial autoregressive models is studied, which provides a basis for the confirmation of a semi-varying coefficient spatial autoregressive model. Furthermore, some simulation experiments are conducted to evaluate the validity of the Bootstrap approximation in the case of a finite sample size. Meanwhile, when the error term distribution is different. The value of the spatial autoregressive parameter changes, and the collinearity among the explanatory variables varies, the accuracy of the bootstrap approximation to their null distributions and the power of the test are investigated. The simulation results demonstrate that the proposed Bootstrap method can accurately approximate the zero distribution of test statistics, and the test has a good effect.

Key words: varying coefficient spatial autoregressive models, Bootstrap test, constant coefficients, spatial dependence

中图分类号: