在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报

• • 上一篇    

Eikonal方程的两类高阶快速扫描格式

黄晓倩1,  蒋艳群2,  胡迎港2,  蒋剑军3   

  1. 1. 西南科技大学信息工程学院,绵阳 621010
    2. 西南科技大学数理学院,绵阳 621010
    3. 铜陵学院数学与计算机学院,铜陵 244061
  • 收稿日期:2022-08-01 接受日期:2022-12-25 发布日期:2025-06-15
  • 通讯作者: 蒋艳群 E-mail: jyq2005@mail.ustc.edu.cn
  • 基金资助:
    国家自然科学基金(11872323);国家数值风洞工程项目(NNW2018-ZT4A08);安徽省高校自然科学重点研究项目(KJ2020A0973).

Two Classes of High-order Fast Sweeping Schemes for Eikonal Equations

HUANG Xiaoqian1,  JIANG Yanqun2,  HU Yinggang2,  JIANG Jianjun3   

  1. 1. School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010
    2. School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621010
    3. School of Mathematics and Computer Science, Tongling University, Tongling 244061
  • Received:2022-08-01 Accepted:2022-12-25 Published:2025-06-15
  • Contact: Y. Jiang. E-mail address: jyq2005@mail.ustc.edu.cn
  • Supported by:
    The National Natural Science Foundation of China (11872323); the National Numerical Wind Tunnel Project (NNW2018-ZT4A08); the Key Project of Natural Science Research of Universities in Anhui Province (KJ2020A0973).

摘要:

Eikonal方程在计算机视觉、图像处理、几何光学等领域中有着广泛应用。将高阶精度加权紧致非线性格式(Weighted Compact Nonlinear Scheme, WCNS)和加权基本无振荡(Weighted Essentially Non-oscillatory, WENO)格式推广用于求解Eikonal方程,设计了高阶快速扫描WCNS格式和高阶快速扫描WENO格式。将稳态Eikonal方程转化为伪时间相关问题,具有单调性的Lax-Friedrichs型格式用于计算数值哈密顿通量,五阶WCNS格式和五阶WENO格式用于计算未知变量的空间导数的左右极限值。为加快算法收敛速度以及避免求解离散形式的非线性系统,伪时间方向上采用结合了快速扫描策略的显式时间离散格式。数值结果表明,快速扫描WCNS格式和快速扫描WENO格式在光滑区均能达到五阶设计精度,两者得到的数值解与方程精确解吻合很好。此外,两种格式的计算效率比同阶经典WENO格式要高。

关键词: Eikonal方程, WCNS格式, WENO格式, 快速扫描方法

Abstract:

Eikonal equations are widely used in computer vision, image processing, geometric optics, etc. This paper extends the weighted compact nonlinear scheme (WCNS) and the weighted essentially non-oscillatory (WENO) scheme for hyperbolic conservation laws and designs high-order fast sweeping WCNS and WENO schemes to solve the pseudo-time dependent Eikonal equations. Fifth-order WCNS and WENO schemes are applied to compute the left and right limit values of spatial derivatives of the unknown variable coupled with the monotone Lax-Friedrichs numerical Hamiltonians. In order to speed up the convergence of the designed algorithm and to avoid solving a nonlinear discrete system, an explicit time-marching scheme combined with a fast sweeping strategy is used for time discretization. Numerical results show that both the fast sweeping WCNS method and the fast sweeping WENO method can achieve fifth-order accuracy in smooth regions and the numerical solutions obtained with the two methods are in good agreement with the exact solutions of Eikonal equations. Compared with the classical WENO method of the same order, the fast sweeping WCNS and WENO schemes are more efficient when they obtain the same numerical errors.

Key words: Eikonal equations, WCNS scheme, WENO scheme, fast sweeping method

中图分类号: