在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报

• •    

封闭式 Cohen 类时频分布的不确定性原理

朱志成,   张志超   

  1. 南京信息工程大学数学与统计学院,江苏  210044
  • 收稿日期:2022-11-04 接受日期:2023-09-18 出版日期:2025-10-15 发布日期:2025-10-15
  • 通讯作者: 张志超 E-mail: zzc910731@163.com
  • 基金资助:
    国家自然科学基金 (61901223);江苏省博士后科研资助计划 (B类) (2021K205B).

Uncertainty Principle of Closed Cohen Class Time-frequency Distribution

ZHU Zhicheng,   ZHANG Zhichao   

  1. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Jiangsu 210044
  • Received:2022-11-04 Accepted:2023-09-18 Online:2025-10-15 Published:2025-10-15
  • Contact: Z. Zhang. E-mail address: zzc910731@163.com
  • Supported by:
    The National Natural Science Foundation of China (61901223); the Postdoctoral Research Funding Program of Jiangsu Province (Category B) (2021K205B).

摘要:

由线性正则变换自由参数嵌入方法得到的封闭式 Cohen 类时频分辨率依赖于参数选取,而不确定性原理描述的下界能够表征时频分辨率极限,因此研究封闭式 Cohen 类时频分布的不确定性原理对最优参数选取具有重要指导意义。通过构建$N$ 维自由亚辛变换与封闭式 Cohen 类时频分布之间的二维可分线性正则变换关系,研究了封闭式 Cohen 类时频分布的Heisenberg、Hardy、Donoho、Nazarov、Beurling、Loga-rithmic、Entropic 等类型的不确定性原理。对于前四类,除基于自由亚辛变换表示的封闭式 Cohen 类时频分布不确定性原理外,还存在由传统 Cohen 类时频分布推广而来的表达式。最后,证明了两种研究方法所得不确定性原理的等价性。

关键词: 封闭式 Cohen 类时频分布, 不确定性原理, 自由亚辛变换

Abstract:

The closed Cohen class time-frequency resolution obtained by the linear canonical transformation free parameter embedding method depends on the parameter selection, and the lower bound described by the uncertainty principle can represent the time-frequency resolution limit. Therefore, studying the uncertainty principle of the closed Cohen class time-frequency distribution plays an important part in guiding significance for the optimal parameter selection. In this paper, by constructing the relationship of two-dimensional separable linear canonical transform between the N-dimensional free metaplectic transformation and the closed Cohen class time-frequency distribution, we studied the uncertainty principle of closed Cohen class time-frequency distributions, including types of Heisenberg, Hardy, Donoho, Nazarov, Beurling, Logarithmic, Entropic, and etc. For the first four categories, except for the closed Cohen class time-frequency distribution uncertainty principle based on free metaplectic transformation, there are also expressions generalized from the traditional Cohen class time-frequency distribution. Finally, the equivalence of the uncertainty principle obtained by the two methods is proved.

Key words: closed Cohen class time-frequency distribution, uncertainty principle, free metaplectic transformation

中图分类号: