在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2026, Vol. 42 ›› Issue (6): 1005-1013.doi: 10.3969/j.issn.1005-3085.2025.06.002cstr: 32411.14.cjem.CN61-1269/O1.2025.06.002

• • 上一篇    下一篇

具有饱和发生率的离散 SIR 模型全局分析

胡新利,  李航航,   吴    航   

  1. 西安工程大学理学院,西安 710048
  • 收稿日期:2023-03-09 接受日期:2023-08-21 出版日期:2025-12-15 发布日期:2025-02-15
  • 基金资助:
    国家自然科学基金 (12271421);国家留学基金 (202108615055).

Global Analysis of Discrete SIR Model with Saturated Incidence

HU Xinli,  LI Hanghang,   WU Hang   

  1. School of Science, Xi'an Polytechnic University, Xi'an 710048
  • Received:2023-03-09 Accepted:2023-08-21 Online:2025-12-15 Published:2025-02-15
  • Supported by:
    The National Natural Science Foundation of China (12271421); the Scholarship Council Fund of China (202108615055).

摘要:

利用非标准有限差分方法离散化具有饱和发生率的 SIR 模型,并对离散 SIR 模型进行了求解和动力学分析。得到了模型解的存在性、正性和有界性;并通过构造合适的 V 函数证明了当基本再生数 $R_0<1$ 时,无病平衡点 $E_0$ 是全局渐近稳定的;当 $R_0>1$ 时,地方病平衡点 $E^*$ 是全局渐近稳定的。最后,数值模拟验证支持了理论结果,并显示相对于前向欧拉法,非标准有限差分法的步长 $h$ 对于模型的全局性态没有影响。

关键词: 非标准有限差分法, 一般疾病发生率, 基本再生数, 全局稳定性

Abstract:

This paper  discretizes the SIR model with a saturated incidence rate using a nonstandard finite difference method, then solves and analyzes the properties of the  discrete SIR model. The existence positivity and boundedness of the model's solution are obtained. It is shown that the disease-free equilibrium $E_0$ is globally asymptotically stable if the basic reproductive number $R_0<1$, the endemic equilibrium $E^*$ is globally asymptotically stable if $R_0>1$ by constructing a proper V-function. Finally, the numerical simulation supports the proposed theoretical results. According to the simulation, the step length $h$ of the nonstandard finite difference method, rather than that of the forward euler method, has no effect on the global dynamics of the discrete model.

Key words: nonstandard finite difference method, general disease incidence, the basic reproduction number, global stability

中图分类号: