工程数学学报 ›› 2020, Vol. 37 ›› Issue (3): 261-268.doi: 10.3969/j.issn.1005-3085.2020.03.001
• • 下一篇
张 珹
ZHANG Cheng
摘要: 高铁4C检测系统可以获取接触网的大量图像,如何利用人工智能技术检测接触网支撑装置的紧固件松动、脱落、变形等故障,是一项迫切需要攻克的技术难题.由于紧固件在整幅图像中占比非常小,解决这一问题的可行方案是先对紧固件识别定位,然后对其进行图像分割,再识别其故障类型.本文提出一种改进的Faster R-CNN算法,可以准确地实现各种紧固件的识别与定位.具体的改进策略为在深度网络中引入一种基于SE模型的注意力机制,加强各通道对有效特征的提取,在Faster R-CNN中以GA-RPN替代RPN网络.实验结果表明,本文所提出的方法对接触网紧固件识别准确率达93.4%以上.
中图分类号: