在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2017, Vol. 34 ›› Issue (6): 637-645.doi: 10.3969/j.issn.1005-3085.2017.06.007

• • 上一篇    下一篇

一类四阶非线性椭圆方程的无穷多个变号解

高   敏1,   武   瑛2   

  1. 1- 陕西师范大学数学与信息科学学院,西安  710062
    2- 西安科技大学理学院,西安  710054
  • 收稿日期:2016-03-04 接受日期:2016-09-28 出版日期:2017-12-15 发布日期:2018-02-15
  • 通讯作者: 武 瑛 E-mail: wuyingxust@gmail.com
  • 基金资助:
    国家自然科学基金(11101253);中央高校基本科研业务费专项基金(GK201503016);陕西省教育厅科研计划项目(14JK1461).

Infinitely Many Sign-changing Solutions for a Class of Fourth-order Elliptic Equations

GAO Min1,   WU Ying2   

  1. 1- School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062
    2- School of Science, Xi'an University of Science and Technology, Xi'an 710054
  • Received:2016-03-04 Accepted:2016-09-28 Online:2017-12-15 Published:2018-02-15
  • Contact: Y. Wu. E-mail address: wuyingxust@gmail.com
  • Supported by:
    The National Natural Science Foundation of China (11101253); the Fundamental Research Funds for the Central Universities (GK201503016); the Science Program of Education Department of Shaanxi Province (14JK1461).

摘要: 在工程实际中,含有双调和算子的四阶椭圆问题$\Delta^2 u + c \Delta u = f(x,u), x \in \Omega$,可用来描述悬索桥的非线性振动.当悬索桥处于平衡位置且不受外力的理想情形下,相应的边界条件为$u|_{\partial \Omega} = \Delta u|_{\partial \Omega} = 0$.本文研究了一类四阶椭圆边值问题,其中非线性项$f$在$0$处渐近线性、在$\infty$处超二次.证明方法为下降流不变集方法,主要结果是证明了这类四阶椭圆边值问题存在一个变号解以及存在无穷多个变号解的两个定理.所得结果及其证明方法均不同于现有文献中的结果.

关键词: 四阶椭圆边值问题, 解的存在性, 变号解, 临界点

Abstract: In engineering practice, the fourth-order elliptic equation with the biharmonic operator $\Delta^2 u + c \Delta u = f(x,u), x \in \Omega$, can be used to describe the deformation of an suspension bridge. When the bridge is in equilibrium and there are no external forces, the corresponding equation satisfies the boundary condition $u|_{\partial \Omega} = \Delta u|_{\partial \Omega} = 0$. In this paper, a class of fourth-order elliptic boundary value problems is examined under the assumption that the nonlinear term $f$ is asymptotically linear at $0$ and superquadric at $\infty$ with respect to $u$. The proof method is the descending flow invariant set method. The main results are two theorems which establish the existence of one sign-changing solution and infinitely many sign-changing solutions, respectively. The main results and the proofs are different from those presented in current literature.

Key words: fourth-order elliptic boundary value problems, existence of solution, sign-changing solutions, critical points

中图分类号: