在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2017, Vol. 34 ›› Issue (4): 345-353.doi: 10.3969/j.issn.1005-3085.2017.04.002

• • 上一篇    下一篇

改进的四子空间方法及其在电厂设备状态监测中的应用

张   帆1,   凌   骏1,   魏   鑫2,   梅   玉2,   靖稳峰2   

  1. 1- 上海电气电站集团远程监控与故障诊断技术研究所,上海  201612
    2- 西安交通大学数学与统计学院,西安  710049
  • 收稿日期:2017-01-05 接受日期:2017-06-09 出版日期:2017-08-15 发布日期:2017-10-15
  • 基金资助:
    国家自然科学基金(71371152; 11571270).

Improved Four-subspace Method and Its Application to Equipment Status Monitoring in Power Plants

ZHANG Fan1,   LING Jun1,   WEI Xin2,   MEI Yu2,   JING Wen-feng2   

  1. 1- Remote Monitoring and Diagnostic Institute, Shanghai Electric Power Generation Group, Shanghai 201612
    2- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049
  • Received:2017-01-05 Accepted:2017-06-09 Online:2017-08-15 Published:2017-10-15
  • Supported by:
    The National Natural Science Foundation of China (71371152; 11571270).

摘要: 四子空间方法作为常用的状态监测方法,需要假设过程变量服从高斯分布,实际中大部分的工业数据并不服从高斯分布,这使得四子空间方法的应用范围非常有限.基于此,本文使用核密度估计方法来改进传统的四子空间方法,得到了适用于一般分布下的基于核密度估计的四子空间状态监测方法.最后,利用电厂高温过热器的实际数据进行检验.结果表明改进的四子空间方法更为普适,状态监测效果也有很大的提高.

关键词: 四子空间方法, 核密度估计方法, 状态监测, 非高斯分布

Abstract: As a usual status monitoring method, four subspace method is only applicable under the condition that process data follows Gaussian process. However, most of industrial data are non-Gaussian, which makes the application of the four subspace method rather limited. This paper uses a kernel density estimation method to improve the traditional four subspace method, and designs a four subspace status monitoring method based on the kernel density estimation, which is suitable for general distributions. Finally, using the real data of high temperature superheater in some electric power plant, the empirical results show that the improved four subspace method is more universal, and it can significantly improve the status monitoring effect.

Key words: four subspace method, kernel density estimation, status monitoring, non-Gaussian distribution

中图分类号: