在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2021, Vol. 38 ›› Issue (2): 249-256.doi: 10.3969/j.issn.1005-3085.2021.02.008

• • 上一篇    下一篇

严格对角占优$M$-矩阵的逆矩阵的无穷大范数的上界估计

赵仁庆,   甘小艇,   张   坤   

  1. 楚雄师范学院数学与统计学院,云南 楚雄 675000
  • 收稿日期:2020-02-17 接受日期:2020-07-10 出版日期:2021-04-15 发布日期:2022-11-08
  • 基金资助:
    云南省科技计划青年项目 (2017FD149).

Estimation on Upper Bounds for the Infinity Norms of Inverses Matrix of Strictly Diagonally Dominant $M$-matrices

ZHAO Ren-qing,   GAN Xiao-ting,   ZHANG Kun   

  1. School of Mathematics and Statistics, Chuxiong Normal University, Chuxiong, Yunnan 675000
  • Received:2020-02-17 Accepted:2020-07-10 Online:2021-04-15 Published:2022-11-08
  • Supported by:
    The Youth Project of the Science and Technology Plans of Yunnan Province (2017FD149).

摘要: $M$-矩阵是应用背景很广的一类特殊矩阵,生物学、物理学和社会科学等方面的许多问题都与$M$-矩阵有着密切的联系,因此对$M$-矩阵的研究具有重要意义.本文首先引入一组新的记号,给出严格对角占优$M$-矩阵及其逆矩阵元素关系的两个不等式,由此得到了逆矩阵的无穷大范数上界估计式,最后给出矩阵$A$的最小特征值的下界,这些估计式只依赖于矩阵$A$的元素.理论分析和数值算例表明新估计式改进了相关结果.

关键词: 对角占优矩阵, $M$-矩阵, 无穷大范数, 上界, 最小特征值

Abstract: $M$-matrix is a kind of special matrix which has wide applications. Many problems in biology, physics and social science and so on have close connection with $M$-matrice, hence researches on $M$-matrix is valuable. In this paper, firstly, some new notations are introduced, and two inequalities of element relation on strictly diagonally dominant $M$-matrix and the inverse matrix are given. Secondly, some new upper bounds for the infinity norm of inverse matrix are obtained. Finally, the lower bound of the smallest eigenvalue of matrix $A$ is presented, which only depends on the elements of matrix $A$. The theoreical analysis and numerical examples show that the new upper bounds improve the related results.

Key words: diagonal dominance matrix, $M$-matrix, infinity norms, upper bound, minimum eigenvalue

中图分类号: