在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2019, Vol. 36 ›› Issue (6): 611-626.doi: 10.3969/j.issn.1005-3085.2019.06.001

• •    下一篇

基于广义矩方法的随机波动率模型参数估计

张新军1,  陈华珠2,3,  江  良1   

  1. 1- 莆田学院数学与金融学院,莆田  351100
    2- 华南理工大学经济与贸易学院,广州  510641
    3- 上海浦东发展银行广州分行,广州  510000
  • 收稿日期:2017-06-05 接受日期:2019-05-06 出版日期:2019-12-15 发布日期:2020-02-15
  • 通讯作者: 江 良 E-mail: ptjliang@163.com
  • 基金资助:
    国家自然科学基金(11471175);福建省自然科学基金(2016J01677; 2017J01565);福建省中青年教师教育科研项目(JAT170500).

Parametric Estimation of Stochastic Volatility Models with Generalized Moment Method

ZHANG Xin-jun1,  CHEN Hua-zhu2,3,  JIANG Liang1   

  1. 1- School of Mathematics and Finance, Putian University, Putian 351100
    2- School of Economics and Trade, South China University of Technology, Guangzhou 510641
    3- Guangzhou Pudong Development Bank, Guangzhou 510000
  • Received:2017-06-05 Accepted:2019-05-06 Online:2019-12-15 Published:2020-02-15
  • Contact: L. Jiang. E-mail address: ptjliang@163.com
  • Supported by:
    The National Natural Science Foundation of China (11471175); the Natural Science Foundation of Fujian Province (2016J01677; 2017J01565); the Education and Scientific Research Foundation for Middle-aged and Young Teachers in Fujian Province (JAT170500).

摘要: 金融资产价格的风险来自于自身价格的波动,而刻画资产价格波动的指标是波动率.本文以上证综合指数作为研究对象,通过广义矩估计(GMM)方法给出随机波动模型的参数估计和统计推断.借鉴无穷小生成元,条件期望算子和微分算子 Taylor 展开等知识,从理论上给出 GMM 的必要条件,即正交矩条件,进一步应用 GMM 方法研究随机波动率模型的参数估计,并通过应用重度抽样粒子滤波器(SIR)给出随机波动率的过滤估计值.实证结果表明,刻画上证综合指数需要引入随机波动率,同时也发现随机波动率模型能够很好地描述一些重大的经济现象.最后,根据所得参数估计结果,分析了随机波动率模型的欧式看涨期权问题.

关键词: 随机波动率模型, 广义矩方法, 欧式看涨期权, 蒙特卡洛方法

Abstract: The risks of financial asset prices arise from their fluctuation, which can be defined by volatility. This paper develops the Generalized Moment Method (GMM) to make parametric estimations and statistical inference for stochastic volatility models by using the Shanghai Composite Index. By utilizing the infinitesimal generator, the conditional expectation operator and the Taylor expansion of the differential operator, we determine the necessary conditions for GMM, namely, the orthogonal moment condition. Meanwhile, the filtered values of the stochastic volatility will be estimated by developing a sampling-importance and resampling algorithm. The empirical results show that the established model needs to introduce stochastic volatility, and the model can describe some major economic phenomena. Finally, we carry out the numerical results for European call option by using Monte Carlo method.

Key words: stochastic volatility model, generalized moment method, European call option, Monte Carlo method

中图分类号: