在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2019, Vol. 36 ›› Issue (6): 693-707.doi: 10.3969/j.issn.1005-3085.2019.06.008

• • 上一篇    下一篇

捕食者和食饵都具有阶段结构的时滞捕食系统的稳定性和 Hopf 分支(英)

朱  焕,  高德宝   

  1. 黑龙江八一农垦大学理学院,大庆 163319
  • 收稿日期:2017-08-01 接受日期:2018-09-18 出版日期:2019-12-15 发布日期:2020-02-15
  • 基金资助:
     黑龙江八一农垦大学科技基金(XZR2017-15).

Stability and Hopf Bifurcation in a Time-delayed Predator-prey System with Stage Structures for Both Predator and Prey

ZHU Huan,  GAO De-bao   

  1. College of Sciences, Heilongjiang Bayi Agriculture University, Daqing 163319
  • Received:2017-08-01 Accepted:2018-09-18 Online:2019-12-15 Published:2020-02-15
  • Supported by:
    The Science and Technology Foundation of Heilongjiang Bayi Agricultural University (XZR2017-15).

摘要: 自然界中,种群增长往往有一个增长和发育的过程M.在不同的年龄阶段,捕食者和食饵会表现出不同的生长特性.此外,时滞对微分方程解的拓扑结构也有很大的影响.许多情况下时滞会破坏正平衡点的稳定性,产生 Hopf 分支.本文以幼年捕食者到成年捕食者的生长时间为时滞,建立捕食者和食饵都具有阶段结构的时滞捕食系统,利用无限维系统的持久性理论和 Hurwitz 准则,给出了系统的永久持续性生存和系统共存平衡的局部稳定性条件.以时滞为参数,得出了系统 Hopf 分支存在性,利用规范型理论和中心流形定理确定了 Hopf 分支的方向以及 Hopf 分支周期解的稳定性.最后,通过选取满足定理条件的参数,得到了引起 Hopf 分支的临界值 ,并用数值例子验证了定理结论.

关键词: 捕食系统, 时滞, 阶段结构, 稳定性, Hopf 分支

Abstract: In nature, population growth often has a process of growing and development. At different age stages, both predators and prey will show different growth characteristics. In addition, the delay has a great influence on the topological structure of differential equation solutions. In many cases, the change of the delay will destroy the stability of the positive equilibrium point and produce Hopf bifurcation. Therefore, this paper takes the growth time from young predator to adult predator as the delay, constructs a time-delayed predator-prey system with stage structure for both predator and prey. Using the persistence theory for infinite-dimensional systems and Hurwitz criterion, the permanent persistence condition of this system and the local stability condition of the system's coexistence equilibrium are given. Choosing the delay as a bifurcation parameter, we derive the existence of the Hopf bifurcation in this system, and then using normal form theory and center manifold arguments, we discuss the direction of the Hopf bifurcation and the stability of period solutions bifurcating from the Hopf bifurcations. Finally, the critical value $\tau_{0n}$ that causes Hopf bifurcation is obtained by choosing the qualified parameters satisfying the theorem conditions, and numerical results are presented to verify the theoretical conclusion.

Key words: predator-prey system, time delay, stage structure, stability, Hopf bifurcation

中图分类号: