在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2023, Vol. 40 ›› Issue (1): 1-19.doi: 10.3969/j.issn.1005-3085.2023.01.001

• •    下一篇

基于 ResU-Net 的三维断层识别方法及应用

何  涛1,2,   刘乃豪3,   吴帮玉1,2,   李  博2,   朱  旭1,2,   郑  浩2   

  1. 1. 西安交通大学数学与统计学院,西安 710049;2. 中石化石油物探技术研究院有限公司,南京 211103;3. 西安交通大学电子与信息工程学院,西安 710049
  • 出版日期:2023-02-15 发布日期:2023-04-11
  • 通讯作者: 吴帮玉 E-mail: bangyuwu@xjtu.edu.cn
  • 基金资助:
    国家自然科学基金(41974122; 41904102);中国博士后科学基金(2019M653584);陕西省自然科学基础研究计划(2023-JC-YB-269);西安交通大学新教师支持计划项目(xjh012019030; xxj022019006);博士后创新人才支持计划项目(BX201900279).

ResU-Net Based Three-dimensional Fault Identification Method and Application

HE Tao1,2,   LIU Naihao3,   WU Bangyu1,2,   LI Bo2,   ZHU Xu1,2,   ZHENG Hao2   

  1. 1. School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049;
    2. SINOPEC Geophysical Research Institute Co., Ltd., Nanjing 211103;
    3. School of Information and Communications Engineering, Xi'an Jiaotong University, Xi'an 710049
  • Online:2023-02-15 Published:2023-04-11
  • Contact: B. Wu. E-mail address: bangyuwu@xjtu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China (41974122; 41904102); the Postdoctoral Science Foundation of China (2019M653584); the Natural Science Basic Research Program of Shaanxi Province (2023-JC-YB-269); the New Teacher Support Program of Xi'an Jiaotong University (xjh012019030; xxj022019006); the Postdoctoral Innovative Talent Support Program (BX201900279).

摘要:

断层刻画了地层的边界位置,地震成像数据中反射层的不连续性可作为断层解释的主要依据。深度神经网络的强非线性性质可作为地震数据中断层不连续特征表达的有力工具,断层识别问题可视作一个像素级别的二分类问题,并使用深度学习方法对此问题进行建模求解。据此可给出一种端到端的基于深度学习网络的三维断层自动识别方法。首先利用地震子波与反射系数卷积合成多组三维地震数据,建立用于深度网络学习断层特征的样本数据,随后搭建网络进行训练,网络训练完成后应用于实际地震数据。鉴于残差模块可很好地提升网络泛化性能,所提出的将残差网络中的残差块结构引入U-Net中的方法,可用于提升通过合成数据样本训练得到的网络模型在训练数据之外,即实际地震数据上的断层识别性能。所建立网络用于断层解释时,输入为叠后三维地震数据,输出为相同维度的三维数据体,其中每一输出值代表输入三维地震数据相同位置处断层的概率。实际算例对比测试表明,此方法可对三维地震数据中的断层进行有效识别,在合成数据集上训练精度相差不大的前提下,引入残差模块的ResU-Net在实际地震数据上的断层识别泛化性能得到提升。

关键词: 断层识别, 残差模块, ResU-Net, 合成训练样本, 泛化性能

Abstract:

Fault describes the boundary position of the stratum, thus the discontinuity of the reflection layer in seismic image can be used as the main basis for fault interpretation. The strong nonlinear nature of deep neural networks can be used as a powerful tool to express the discontinuous features of seismic data. Fault interpretation can be regarded as a pixel-wise binary classification problem, and deep learning methods are used to model and solve the problem. An end-to-end three-dimensional fault automatic identification method is presented based on a deep learning network. Firstly, multiple sets of 3D seismic volume are synthesized by convolution of wavelets and reflection coefficients for deep network to learn fault characteristics. Then a network is built for training, and applied to field seismic data after the network training is completed. Due to the residual module can improve the generalization performance of the network, the proposed method to incorporates the residual block structure into the U-Net to improve the network model's fault identification performance on field data. The input of the trained network is the post-stack 3D seismic data, and the output is 3D data volume with same dimension, where each output value is the probability of the fault at the corresponding position of the input 3D seismic data. Field data example tests show that this method can effectively identify faults in seismic data, and at the same time further improve the generalization performance on field data.

Key words: fault identification, residual block, ResU-Net, synthetic training sample, generalization performance

中图分类号: