工程数学学报 ›› 2019, Vol. 36 ›› Issue (4): 431-438.doi: 10.3969/j.issn.1005-3085.2019.04.006
段献葆, 曹琴琴, 谭红霞
DUAN Xian-bao, CAO Qin-qin, TAN Hong-xia
摘要: 为了减少解在较小的局部区域内有着很强的奇异性、剧烈变化等的偏微分方程求解问题的计算量,提出了一种基于方程求解的移动网格方法,并将其应用于二维不可压缩Navier-Stokes方程的求解.与已有的大部分移动网格方法不同,网格节点的移动距离是通过求解一个变系数扩散方程得到的,避免了做区域映射,也不需要对控制函数进行磨光处理,所以算法很容易编程实现.数值算例表明所提算法能够在解梯度较大的位置加密网格,从而在保证提高数值解的分辨率的前提下,可以很好地节省了计算量.由于Navier-Stokes 的典型性,所得算法能够推广到求解很大一类偏微分方程数值问题.
中图分类号: