在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2019, Vol. 36 ›› Issue (2): 155-164.doi: 10.3969/j.issn.1005-3085.2019.02.003

• • 上一篇    下一篇

基于多元半参数回归建模的机械加工过程误差分析

张  磊,  董  妍,  王  磊,  赵恩兰,  黄传辉   

  1. 徐州工程学院 江苏省工程机械检测与控制重点实验室,徐州  221018
  • 收稿日期:2018-03-22 接受日期:2018-11-06 出版日期:2019-04-15 发布日期:2019-06-15
  • 基金资助:
    江苏省重点研发计划(BE2016047);江苏省高校自然科学基金(15KJB460016);徐州市工业科技计划重点研发项目(KC16GZ015).

Variation Analysis for Common Machining Processes Based on a Multivariate Semi-parametric Regression Model

ZHANG Lei,  DONG Yan,  WANG Lei,  ZHAO En-lan,  HUANG Chuan-hui   

  1. Jiangsu Key Laboratory of Construction Machinery Detection and Control, Xuzhou University of Technology, Xuzhou 221018
  • Received:2018-03-22 Accepted:2018-11-06 Online:2019-04-15 Published:2019-06-15
  • Supported by:
    The Major Industrial Technology Project in Jiangsu Province (BE2016047); the Natural Science Fund for Colleges and Universities in Jiangsu Province (15KJB460016); the Major Industrial Technology Project in Xuzhou City (KC16GZ015).

摘要: 机械加工过程的误差分析对于消减误差源、提升工序质量具有重要的实际指导意义.研究者们尝试了多种误差分析方法用于获得误差源对加工质量的作用规律,然而由于加工误差的复杂性,各有局限性.本文则根据工程经验和数学推导建立了用于一般机械加工过程误差分析的多元半参数回归模型,基于测量数据详细讨论了所建立模型的参数估计和非参数规律辨识问题.仿真实例证明,与现有方法相比,本文所提方法能够准确估计上游工序传递误差,有效辨识当前工序系统误差的作用规律,研究成果为一般机械加工过程的误差分析奠定了基础.

关键词: 机械加工过程, 误差分析, 多元半参数回归模型, 最小二乘核光滑估计, 最优窗宽

Abstract: Variation analysis for common machining processes aims to reduce variation sources and improve manufacturing quality. Researchers have attempted many methods to recognize the rules of variation sources acting on the machining elements. However, the methods have their own limitations individually due to the complexity of the machining errors. In this paper, a multivariate semi-parametric regression model based on the mathematical analysis and the engineering experiences is proposed to face the variation analysis challenge in common machining processes. The parametric estimation and non-parametric rule identification are discussed in detail based on the measured data. A simulation case indicates that compared with the existing method, the proposed model not only is able to accurately estimate the variation streamed from previous machining stations, but also effectively identify the system errors at current station. The research provides a foundation for variation analysis in common machining processes.

Key words: common machining processes, variation analysis, a multivariate semi-parametric regression model, a least squares kernel smoothing estimation, optimal window width

中图分类号: