在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2018, Vol. 35 ›› Issue (1): 25-32.doi: 10.3969/j.issn.1005-3085.2018.01.003

• • 上一篇    下一篇

凸组合投影算法中的组合因子对算法效率的影响

闫喜红,   王川龙   

  1. 太原师范学院工程科学计算山西省高等学校重点实验室,山西  晋中  030619
  • 收稿日期:2016-03-03 接受日期:2016-09-05 出版日期:2018-02-15 发布日期:2018-04-15
  • 基金资助:
    山西省自然科学基金(2014011006-1).

A Note on the Impact of the Convex Combination Factor of a Convex Combination Projection Algorithm

YAN Xi-hong,  WANG Chuan-long   

  1. Higher Education Key Laboratory of Engineering and Scientific Computing in Shanxi Province, Taiyuan Normal University, Jinzhong, Shanxi 030619
  • Received:2016-03-03 Accepted:2016-09-05 Online:2018-02-15 Published:2018-04-15
  • Supported by:
    The Natural Science Foundation of Shanxi Province (2014011006-1).

摘要: 在求解生产生活中各类实际问题的优化模型的算法研究中,投影梯度算法在解决凸约束最优化问题上一直被学者所重视.本文考虑凸组合投影算法求解凸约束最优化问题,在此凸组合投影算法中,由投影梯度法得到的点与上一步迭代点的凸组合得到新的迭代点.此算法不仅利用投影算法得到的点的信息而且也利用了前一步点的信息.进一步,通过数值实验分析凸组合算法的效率及凸组合因子对算法的影响.数值试验结果表明,这种凸组合算法总体比原来投影梯度法更稳定,而且这种凸组合算法在适当的凸组合因子下较投影梯度法收敛更快.

关键词: 约束优化, 变分不等式, 投影梯度法, 凸组合算法

Abstract: Many algorithms have been developed to solve optimization models which have wide-spread real-world applications. Among them, the gradient projection method for solving convex programs is one of the most noteworthy methodologies and has received much attention. In this paper, we consider a convex combination projection algorithm for solving convex programs. In the process of the convex combination projection algorithm, the new iterative point is updated based on the convex combination of the previous point and the point generated by the gradient projection method. Furthermore, we numerically analyze the efficiency and effectiveness of the convex combination projection algorithm and the impact of the convex combination factor on the algorithm. The numerical results show that the convex combination projection algorithm performs more stably than the gradient projection method and outperforms the gradient projection method when an appropriate convex combination factor is given.

Key words: constraint programming, variational inequality, gradient projection method, convex combination algorithm

中图分类号: