在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2017, Vol. 34 ›› Issue (1): 100-110.doi: 10.3969/j.issn.1005-3085.2017.01.010

• • 上一篇    

$p$-Laplacian分数微分方程的周期边界问题(英)

周   辉1,   周宗福2,   王莉萍2   

  1. 1- 合肥师范学院数学与统计学院,合肥  230601
    2- 安徽大学数学科学学院,合肥  230601
  • 收稿日期:2015-04-20 接受日期:2015-11-13 出版日期:2017-02-15 发布日期:2017-04-15
  • 通讯作者: 周宗福 E-mail: zhouzf12@126.com
  • 基金资助:
    安徽省自然科学基金(1608085MA12);合肥师范大学青年基金(2015QN19).

On Periodic Boundary Problem for $p$-Laplacian Fractional Differential Equations

ZHOU Hui1,   ZHOU Zong-fu2,   WANG Li-ping2   

  1. 1- School of Mathematics and Statistics, Hefei Normal University, Hefei 230601
    2- School of Mathematical Science, Anhui University, Hefei 230601
  • Received:2015-04-20 Accepted:2015-11-13 Online:2017-02-15 Published:2017-04-15
  • Contact: Z. Zhou. E-mail address: zhouzf12@126.com
  • Supported by:
    The Natural Science Foundation of Anhui Province (1608085MA12); the Young Foundation of Hefei Normal University (2015QN19).

摘要: 本文利用重合度理论,研究了一类具周期边界条件的$p$-Laplacian分数微分方程解的存在条件.本文的结果改进了已有的结论.

关键词: $p$-拉普拉斯, 重合度, 存在性, 分数阶微分方程, 周期边值问题

Abstract:

In this paper, by using the coincidence degree theory, the existence of solutions for the $p$-Laplacian fractional differential equations with periodic boundary conditions is studied. The result obtained in this paper extends some known results.

Key words: $p$-Laplacian, coincidence degree, existence, fractional differential equation, periodic boundary value problem

中图分类号: