在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2017, Vol. 34 ›› Issue (2): 155-170.doi: 10.3969/j.issn.1005-3085.2017.02.005

• • 上一篇    下一篇

求解非定常N-S方程的稳定化分数步长法研究

李   倩,   贾慧勇,   贾宏恩   

  1. 太原理工大学数学学院,太原  030024
  • 收稿日期:2015-05-22 接受日期:2015-11-05 出版日期:2017-04-15 发布日期:2017-06-15
  • 通讯作者: 贾宏恩 E-mail: jiahongen@aliyun.com
  • 基金资助:
    国家自然科学基金(11401422);山西省自然科学基金(2015011001).

The Exploration of the Stabilized Projection Method for the Time-dependent Navier-Stokes Equations

LI Qian,   JIA Hui-yong,   JIA Hong-en   

  1. College of Mathematics, Taiyuan University of Technology, Taiyuan 030024
  • Received:2015-05-22 Accepted:2015-11-05 Online:2017-04-15 Published:2017-06-15
  • Contact: H. Jia. E-mail address: jiahongen@aliyun.com
  • Supported by:
    The National Natural Science Foundation of China (11401422); the Natural Science Foundation of Shanxi Province (2015011001).

摘要: 本文研究了求解非定常Navier-Stokes方程的稳定化分数步长法.首先,通过一阶精度的算子分裂,将非线性项和不可压缩条件分裂到两个不同的子问题中,并对非线性项采用Oseen迭代.格式分为两步:第一步求解一个线性椭圆问题;第二步求解一个广义的Stokes问题.这两个子问题关于速度都满足齐次Dilichlet边界条件.同时,在格式的第二步添加了局部稳定化项,使用等阶序对来加强数值解的稳定性.通过能量估计方法,对速度与压力做了收敛性分析和误差估计.最后,数值实验验证了方法的有效性.

关键词: 投影方法, 稳定化有限元方法, Navier-Stokes方程, 误差分析

Abstract: In this paper, we discuss a stabilized fractional-step method for numerical solutions of the time-dependent Navier-Stokes equations. The nonlinear term and incompressible condition are separated into two different sub-problems by virtue of the operator splitting method, where the nonlinear term is treated by Oseen iteration. The linear elliptic problem is solved at the first step, and the second step is to solve the generalized Stokes problem. The two problems both satisfy the homogeneous Dirichlet boundary conditions for the velocity. Furthermore, a locally stability term is added in the second step of the scheme, which enhances the numerical stability and efficiency for the equal-order pairs. The convergence analysis and error estimates for the velocity and pressure of the schemes are established via the energy method. Some num-erical results demonstrate the efficiency of the proposed method.

Key words: projection methods, stabilized finite element method, Navier-Stokes equations, error estimates

中图分类号: