工程数学学报 ›› 2017, Vol. 34 ›› Issue (5): 517-533.doi: 10.3969/j.issn.1005-3085.2017.05.007
刘德民
LIU De-min
摘要: Brinkman-Forchheimer方程(BF方程)是具有强非线性项并满足无散度条件的流动控制方程,其中无散度条件的精确满足对控制方程的数值求解极其重要.为了放松无散度条件的限制,本文采用了加罚方法.为了得到加罚问题解的适定性,首先,利用加罚关系将压力项消去,证明了速度所满足的具有单调性的非线性椭圆变分问题等价于对应能量泛函的极小化问题,从而得到了速度的存在唯一性.进一步,利用LBB条件证明了BF方程加罚问题压力的存在唯一性.其次,证明了BF方程加罚问题的Galerkin变分问题的解关于加罚参数收敛到BF方程的Galerkin变分问题的解.最后,给出了BF方程加罚问题Galerkin变分问题的有限维逼近问题及其解的存在唯一性,并且得出了采用协调有限元离散的误差估计.数值算例表明加罚方法是有效的.
中图分类号: