工程数学学报 ›› 2018, Vol. 35 ›› Issue (3): 295-307.doi: 10.3969/j.issn.1005-3085.2018.03.005
杨 洁, 杨卫国
YANG Jie, YANG Wei-guo
摘要: 本文主要研究有限状态齐次树指标Markov链的强大数定律和广义熵遍历定理.熵遍历定理研究的是信息论中信源的渐近均分割性,树指标Markov链是近年来概率论的研究方向之一.首先,参照非齐次Markov链广义熵密度概念,本文给出了树指标Markov链的广义熵密度的定义.然后,通过构造一组期望值为1的随机变量,利用Markov不等式和Borel-Cantelli引理,证明得到了定义在树指标Markov链上一类随机变量的延迟平均的强极限定理.最后,利用上述定理的推论,我们证明得到了Cayley树上有限状态Markov链状态出现次数的延迟平均的强大数定律和广义熵遍历定理.本文的结果是对一些已有结果的推广.
中图分类号: