在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2018, Vol. 35 ›› Issue (4): 408-414.doi: 10.3969/j.issn.1005-3085.2018.04.004

• • 上一篇    下一篇

$|x|$在加密Newman结点的有理插值

张慧明1,   李建俊2   

  1. 1- 河北地质大学数理学院,石家庄  050031
    2- 河北师范大学附属民族学院,石家庄  050091
  • 收稿日期:2017-05-22 接受日期:2018-01-03 出版日期:2018-08-15 发布日期:2018-10-15
  • 基金资助:
    河北省高等学校科学技术研究青年基金(QN2014018).

On Rational Interpolation to $|x|$ at the Dense Newman Nodes

ZHANG Hui-ming1,   LI Jian-jun2   

  1. 1- School of Mathematics and Physics, Hebei GEO University, Shijiazhuang 050031
    2- Affiliated College of Minority Education, Hebei Normal University, Shijiazhuang 050091
  • Received:2017-05-22 Accepted:2018-01-03 Online:2018-08-15 Published:2018-10-15
  • Supported by:
    The Science and Technology Research Youth Fund Project of Hebei University (QN2014018).

摘要: 有理逼近是逼近论中重要的和具有很强生命力的课题.本文研究Newman型有理算子逼近非光滑函数$|x|$,在Newman构造结点组的零点附近$[0,e^{-\sqrt{n}}]$增加$n$个结点.首先,简单介绍$|x|$的有理插值的一些主要成果.然后,对Newman不等式进行改善,由原来的$e^{-\sqrt{n}}$提高到$8e^{-2\sqrt{n}}$.由此得到Newman型有理算子逼近$|x|$的逼近阶为$O(e^{-2\sqrt{n}})$,这个结果优于Newman的经典结果.

关键词: 有理逼近, 有理插值, Newman结点, Newman型有理算子, Newman不等式, 逼近阶

Abstract: Rational approximation is an important and very vital topic in the theory of function approximation. In this paper, we study the approximation of the nonsmooth function $|x|$ by the Newman rational operator, by increasing $n$ nodes near the zero of the Newman constructed nodes. First, we introduce some main achievements on the rational interpolation to $|x|$. Then, by improving the Newman inequality, it improves from the original $e^{-\sqrt{n}}$ to $8e^{-2\sqrt{n}}$. From this, the approximation order of Newman-type rational operator approximating $|x|$ is $O(e^{-2\sqrt{n}})$, the result is better than the classical results of Newman.

Key words: rational approximation, rational interpolation, Newman nodes, Newman-type rational operator, Newman inequality, order of approximation

中图分类号: