在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2018, Vol. 35 ›› Issue (5): 502-514.doi: 10.3969/j.issn.1005-3085.2018.05.002

• • 上一篇    下一篇

一类新的基于信赖域技术的非单调共轭梯度算法

高苗苗1,   宫恩龙2,   孙清滢1,   王真真1,   杜小雨1   

  1. 1- 中国石油大学(华东)理学院,青岛  266580
    2- 青岛酒店管理职业技术学院,青岛 266100
  • 收稿日期:2016-04-25 接受日期:2018-01-23 出版日期:2018-10-15 发布日期:2018-12-15
  • 基金资助:
    国家自然科学基金(61201455).

A New Non-monotone Conjugate Gradient Method Based on the Trust Region Technique

GAO Miao-miao1,   GONG En-long2,   SUN Qing-ying1,   WANG Zhen-zhen1,   DU Xiao-yu1   

  1. 1- College of Science, China University of Petroleum (Huadong), Qingdao 266580
    2- Qingdao Hotel Management College, Qingdao 266100
  • Received:2016-04-25 Accepted:2018-01-23 Online:2018-10-15 Published:2018-12-15
  • Supported by:
    The National Natural Science Foundation of China (61201455).

摘要: 为有效求解大规模无约束优化问题,本文基于信赖域技术和修正拟牛顿方程,同时结合Zhang H. C.策略和Gu N. Z.策略,设计了一种新的非单调共轭梯度算法,应用信赖域技术保证了算法的稳健性和收敛性,并给出了算法的全局收敛性分析.在适当条件下,证明了该算法具有线性收敛性.数值实验表明新算法能够有效求解病态和大规模问题.与单独结合其中一种非单调策略的算法相比,新算法需要较少的迭代次数和运行时间,利用其得到的函数值与最优值更接近.

关键词: 共轭梯度算法, 非单调策略, 全局收敛, 收敛速度

Abstract: In order to effectively solve the large-scale unconstrained optimization problem, based on the trust region technique and the modified quasi-Newton equation, a new non-monotone conjugate gradient algorithm is presented by combining Zhang H. C. and Gu N. Z. strategy in this paper. The trust region technique is applied to ensure the robustness and convergence of the algorithm, and the global convergence property of the algorithm is also analyzed. Under some reasonable conditions, it is proved that the proposed algorithm is linear convergent. Numerical examples indicate that the new algorithm can effectively solve ill-conditioned and large-scale problems. Compared with the algorithm that combines one of the non-monotonic strategies, the new algorithm requires fewer iteration numbers and less running time, and the function value obtained by the new algorithm is closer to the optimal value.

Key words: conjugate gradient algorithm, non-monotone strategy, global convergence, convergence speed

中图分类号: