在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2022, Vol. 39 ›› Issue (2): 171-182.doi: 10.3969/j.issn.1005-3085.2022.02.001

• •    下一篇

基于误差修正 NLSTM 神经网络的无人机航迹预测

梁天宇1,   高  永2,   刘军民1,   惠永昌1   

  1. 1. 西安交通大学数学与统计学院,西安 710049
    2. 海军航空大学航空基础学院,烟台 264001
  • 出版日期:2022-04-15 发布日期:2022-06-15
  • 通讯作者: 刘军民 E-mail: junminliu@mail.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金 (11626252).

UAV Track Prediction Model Based on Error-corrected NLSTM Neural Network

LIANG Tianyu1,   GAO Yong2,   LIU Junmin1,   HUI Yongchang1   

  1. 1. School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049
    2. College of Aeronautical Basic, Naval Aviation University, Yantai 264001
  • Online:2022-04-15 Published:2022-06-15
  • Contact: J. Liu. E-mail address: junminliu@mail.xjtu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China (11626252).

摘要:

无人机产业近年来发展迅猛,在军用和民用方面都拥有广泛的应用前景。无人机的航迹记录在其航行过程中发挥着重要作用,无人机的航迹预测也成为当前世界研究的热点,使用神经网络进行航迹预测更可以充分发挥其优势。首先对国内外学者关于航迹预测的文献进行了梳理,根据航迹预测的原理对目前飞行器航迹预测算法进行了总结和分类,针对利用神经网络模型预测无人机航迹并逐步改进模型以提高预测精度的问题进行了研究。接着对于传统神经网络模型预测精度不够高的问题,提出一种带误差修正的嵌套长短期记忆 (ENLSTM) 神经网络预测模型。ENLSTM 在嵌套长短期记忆网络模型的基础上引入了误差修正项,从而使得预测精度更高。最后使用 BP、RNN、LSTM 和 ENLSTM 四种神经网络模型分别对无人机的真实航迹数据和模拟航迹数据进行仿真实验,得出结论:循环神经网络相对 BP 神经网络在无人机航迹的预测上更具有优势,基于基础循环神经网络的逐步改进提升了模型的预测能力,ENLSTM 模型对于无人机的航迹预测具有更好的效果。

关键词: 无人机, 嵌套长短期记忆, 航迹预测, 误差修正

Abstract:

The UAV industry has developed rapidly in recent years, and has broad application prospects in both military and civilian applications. The track record of UAV plays an important role in its navigation process, and the track prediction of the UAV has also become a hot spot in the current world research. The use of neural network for track prediction can develop to its advantages. Firstly, the domestic and foreign scholars' literatures on track prediction are sorted out, and the current aircraft track prediction algorithms are summarized and classified according to the principle of track prediction. The problem of improving prediction accuracy is studied. Then, aiming at the problem that the prediction accuracy of the traditional neural network model is not high enough, an error-corrected nested long short-term memory (ENLSTM) neural network prediction model is proposed. ENLSTM introduces an error correction term based on the nested long short-term memory network model, which makes the prediction accuracy higher. Finally, four neural network models of BP, RNN, LSTM and ENLSTM are used to simulate the real track data and simulated track data of the UAV respectively. It is concluded that RNN has more advantages in the prediction of UAV track than BP neural network. The gradual improvement based on the basic RNN model improves the prediction ability of the model. ENLSTM model has a better effect on the track prediction of UAV.

Key words: UVA, nested long short-term memory, track prediction, error correction

中图分类号: