在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2023, Vol. 40 ›› Issue (5): 738-750.doi: 10.3969/j.issn.1005-3085.2023.05.004

• • 上一篇    下一篇

部分可观测带跳倒向随机系统的非零和微分博弈及其应用

陈晓兰1,  王凯凯2,  朱庆峰3   

  1. 1. 山东财经大学山东省社会治理智能化技术创新中心,济南  250014;
    2. 山东财经大学统计与数学学院,济南 250014;
    3. 山东财经大学山东省区块链金融重点实验室,济南 250014
  • 收稿日期:2022-04-15 接受日期:2022-11-18 出版日期:2023-10-15 发布日期:2023-12-15
  • 通讯作者: 朱庆峰 E-mail: qfzhu@sdufe.edu.cn
  • 基金资助:
    国家自然科学基金(11671229; 11971259);国家社会科学基金(21BTJ072);山东省自然科学基金(ZR2022MA029; ZR2020MA032);山东省研究生教育质量提升计划项目(SDYKC19197).

Partially Observed Nonzero-sum Differential Game of Backward Systems with Random Jumps and Applications

CHEN Xiaolan1,  WANG Kaikai2,  ZHU Qingfeng3   

  1. 1. Shandong Technology Innovation Center of Social Governance Intelligence, Shandong University of Finance and Economics, Jinan 250014;
    2. School of Statistics and Mathematics, Shandong University of Finance and Economics, Jinan 250014;
    3. Shandong Key Laboratory of Blockchain Finance, Shandong University of Finance and Economics, Jinan 250014
  • Received:2022-04-15 Accepted:2022-11-18 Online:2023-10-15 Published:2023-12-15
  • Contact: Q. Zhu. E-mail address: qfzhu@sdufe.edu.cn
  • Supported by:
    The National Natural Science Foundation of China (11671229; 11971259); the National Social Science Fund of China (21BTJ072); the Natural Science Foundation of Shandong Province (ZR2022MA029; ZR2020MA032); the Graduate Education Quality Improvement Program of Shandong Province (SDYKC19197).

摘要:

微分博弈是研究两个或多个局中人的控制作用同时施加于一个由微分方程描述的动态系统时实现各自最优目标的博弈过程的理论,因其有趣的数学性质和经济领域的应用价值得到了广泛的关注。研究了一类部分可观测带跳倒向随机系统的非零和微分博弈问题,其中博弈系统涉及跳过程,且每个参与者拥有不同的观测方程。对于这种部分可观测的随机微分博弈问题,在控制域为凸的条件下,采用凸变分和对偶技术,建立了博弈纳什均衡点的最大值原理;在适当的凹凸性假设下,证明了必要性最优条件也是充分性最优条件,得到了验证定理。应用上述最大值原理,研究了部分可观测带跳倒向随机系统的线性二次(Linear Quadratic, LQ)博弈问题,得到了LQ博弈问题的唯一最优控制,其中状态方程和伴随方程构成了一类带跳的正倒向随机微分方程。由于LQ模型通常被用于描述许多金融和经济现象,期望上述的部分可观测带跳倒向随机系统的LQ博弈结果能在这些领域得到广泛应用。

关键词: 倒向随机微分方程, 泊松过程, 非零和随机微分博弈, 最大值原理, 纳什均衡点

Abstract:

Differential game is a theory that studies the decision-making process in which two or more players exert their control effects on a moving system described by differential equations to achieve their respective optimal goals. It has been widely concerned because of its interesting mathematical properties and application value in the economic field. A class of partially observed nonzero-sum differential games for backward stochastic systems with random jumps is considered, in which the game system involves the random jumps and each player possesses different observed equation. For this type of partially observed stochastic differential game problem, under the condition that the control domain is convex, the convex variation and duality techniques are used to establish the maximum principle of Nash equilibrium point. Under the appropriate convexity assumption, it is proved that the necessity optimal condition is also the sufficiency optimal condition, which is the verification theorem of Nash equilibrium point. Using the above maximum principle, a partially observed linear quadratic (LQ) game for backward stochastic systems with jumps is studied, and the unique optimal control of the LQ game problem is obtained, where the state equation and the adjoint equation constitute a class of forward backward stochastic differential equations with jumps. Since the LQ model is often used to describe many financial and economic phenomena, it is expected that the partially observed LQ game results for backward stochastic systems with jumps can be widely used in these fields.

Key words: backward stochastic differential equation, Poisson process, nonzero-sum stochastic differential game, maximum principle, Nash equilibrium point

中图分类号: