在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2025, Vol. 42 ›› Issue (3): 473-489.doi: 10.3969/j.issn.1005-3085.2025.03.006doi: 32411.14.1005-3085.2025.03.006

• • 上一篇    下一篇

基于趋势面分析及贝叶斯优化建模的房地产批量估价研究

杨  楠,   亓旻昊   

  1. 上海财经大学统计与管理学院,上海  200433
  • 收稿日期:2022-09-28 接受日期:2022-12-25 出版日期:2025-06-15 发布日期:2025-06-15

Real Estate Mass Appraisal Based on the Trend Surface Analysis and Bayesian Optimization

YANG Nan,   QI Minhao   

  1. School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433
  • Received:2022-09-28 Accepted:2022-12-25 Online:2025-06-15 Published:2025-06-15

摘要:

房地产价格受到区位异质、区位自相关和区位分布非线性的影响,使得快速、大量、精准地进行我国城市复杂区位下的住宅价格评估极具挑战。基于趋势面分析和贝叶斯优化,设计构建BO-TSA-XGBoost模型,将估价问题转换为属性空间划分问题,以实现复杂数据环境中房地产批量估价区位信息的识别与学习。选取2020~2021年上海市16个行政区的34 460条二手房交易数据进行实证分析,研究结果表明:BO-TSA-XGBoost模型能在复杂数据环境中准确识别并学习区位信息,有效解决由复杂区位特征导致的评估精度下降问题,并在多种价格区间、多种复杂区位下具有评估效果一致性;趋势面分析和贝叶斯优化算法可显著提升集成学习模型的评估精准度和评估稳健性;BO-TSA-XGBoost模型精准评估的关键在于住宅区位信息的学习。

关键词: 批量评估, 趋势面分析, 贝叶斯优化, XGBoost

Abstract:

Real estate prices are affected by locational heterogeneity, locational autocorrelation and nonlinearity of locational distribution, which makes it challenging to evaluate housing prices quickly, massively and accurately under complex urban locations in China. Based on trend surface analysis and Bayesian optimization modeling, this paper constructs the BO-TSA-XGBoost model, which converts the valuation problem into an attribute space partitioning problem, to achieve the identification and learning of locational information of real estate mass appraisal in a complex data environment. In this paper, 34 460 second-hand house transaction data from all 16 administrative districts of Shanghai from 2020 to 2021 are collected for empirical analysis. The research results show that the BO-TSA-XGBoost model can accurately identify and learn location information under complex data, effectively solve the problem of evaluation accuracy degradation caused by complex locality characteristics, and achieve a high level of accuracy in multiple price intervals and multiple complex locations; The trend surface analysis and Bayesian optimization algorithm significantly improve the evaluation accuracy and evaluation robustness of the original ensemble learning model; housing location information is the key to the mass appraisal model.

Key words: mass appraisal, trend surface analysis, Bayesian optimization, XGBoost

中图分类号: