在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2017, Vol. 34 ›› Issue (4): 393-408.doi: 10.3969/j.issn.1005-3085.2017.04.007

• • 上一篇    下一篇

含有非线性扰动的时滞随机微分系统的鲁棒均方稳定性

柴双龙,   李树勇   

  1. 绵阳师范学院数理学院,绵阳  621050
  • 收稿日期:2014-10-15 接受日期:2017-01-20 出版日期:2017-08-15 发布日期:2017-10-15
  • 基金资助:
    国家自然科学基金(11271270).

Robust Mean Square Stability for Stochastic Differential Delay Systems with Nonlinear Perturbation

CHAI Shuang-long,   LI Shu-yong   

  1. School of Mathematics and Physics, Mianyang Teachers College, Mianyang 621050
  • Received:2014-10-15 Accepted:2017-01-20 Online:2017-08-15 Published:2017-10-15
  • Supported by:
    The National Natural Science Foundation of China (11271270).

摘要: 研究一类含有非线性扰动的多时变时滞随机微分系统在有记忆状态的反馈控制器下的鲁棒均方稳定性问题.通过构造Lyapunov-Krasovskii泛函,运用It$\hat{\rm o}$公式,引入适当的自由权矩阵,利用积分不等式和分析技巧,基于线性不等式(LMI)方法和Schur补定理,获得含该系统的鲁棒均方渐近稳定和鲁棒均方指数稳定,并给出了相应反馈控制器设计.所得结果与时滞和随机干扰相关,丰富了已有的结果.

关键词: 非线性扰动, 时滞随机微分系统, 反馈控制, 线性矩阵不等式, 鲁棒均方稳定

Abstract: This paper is concerned with the robust mean square stability for stochastic differential systems with multiple time-varying delays and nonlinear perturbation in memory state feedback controller. By establishing a Lyapunov-Krasovskii functional, using the It$\hat{\rm o}$ formula, introducing appropriate free-weighting matrices, making use of an integral inequality and an analytical technique, based on the linear matrix inequality (LMI) and Schur complement theorem, the robust mean square asymptotically stability and the robust mean square  exponentially stability for the system are obtained. In addition, the corresponding state feedback controllers are constructed. The results are dependent on delays and stochastic perturbation, and extend the existing results.

Key words: nonlinear perturbation, stochastic differential system with delays, feedback control, linear matrix inequality (LMI), robust mean square stability

中图分类号: