在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2020, Vol. 37 ›› Issue (1): 107-120.doi: 10.3969/j.issn.1005-3085.2020.01.009

• • 上一篇    下一篇

Kurzweil方程的强收敛性(英)

马学敏1,  张  玲1,  李宝麟2   

  1. 1- 甘肃中医药大学理科教学部,甘肃 定西  743000 
    2- 西北师范大学数学与信息科学学院,兰州  730070
  • 收稿日期:2017-11-06 接受日期:2018-01-17 出版日期:2020-02-15 发布日期:2020-04-15
  • 基金资助:
    国家自然科学基金(10771171);甘肃省555创新人才工程(GS-555-CXRC);西北师范大学科技创新基金资助(NWNU-KJCXGC-212).

Emphatic Convergence for Kurzweil Equations

MA Xue-min1,  ZHANG Ling1,  LI Bao-lin2   

  1. 1- Teaching Department of Science, Gansu University of Chinese Medicine, Dingxi, Gansu 743000
    2- College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070
  • Received:2017-11-06 Accepted:2018-01-17 Online:2020-02-15 Published:2020-04-15
  • Supported by:
    The National Natural Science Foundation of China (10771171); the 555 Innovation Talent Project of Gansu Province (GS-555-CXRC); the Technique Innovation Project of Northwest Normal University (NWNU-KJCXGC-212).

摘要: 本文利用 Kurzweil 积分理论和 $\Phi$-有界变差函数理论,讨论了 Kurzweil 方程的强收敛性及其在常微分方程序列中的应用.得到 Kurzweil 方程 $\Phi$-有界变差解的强收敛性定理,该结果是对 Kurzweil 方程 $\Phi$-有界变差解对参数的连续依赖性性质的延续,并且是对已有的 Kurzweil 方程的有界变差解的强收敛性定理的本质推广.

关键词: Kurzweil 方程, 强收敛性, $\Phi$-有界变差函数

Abstract: In this paper, by using the theories of Kurzweil integral and bounded $\Phi$-variation function. Emphatic convergence for Kurzweil equations and its application for a sequence of ordinary differential equations are discussed. The theorem of emphatic convergence for bounded $\Phi$-variation solutions of Kurzweil equations is obtained. The result is continuation of continuous dependence of bounded $\Phi$-variation solutions on parameters for Kurzweil equations and essential generalization of the emphatic convergence for bounded variation solutions of Kurzweil equations.

Key words: Kurzweil equations, emphatic convergence, bounded $\Phi$-variation function

中图分类号: