在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2020, Vol. 37 ›› Issue (2): 203-214.doi: 10.3969/j.issn.1005-3085.2020.02.006

• • 上一篇    下一篇

Logistic 组稀疏回归模型的 Bayes 建模及变分推断

沈圆圆,  曹文飞,  韩国栋   

  1. 陕西师范大学数学与信息科学学院,西安  710119
  • 收稿日期:2017-10-20 接受日期:2018-05-04 出版日期:2020-04-15 发布日期:2020-06-15
  • 通讯作者: 韩国栋 E-mail: gdhan.math@gmail.com
  • 基金资助:
    国家自然科学基金(61603235);中央高校基本科研业务费(GK201503016);陕西省自然科学基础研究计划项目(2018JQ1032).

Bayesian Modeling and Variational Inference for Logistic Group Sparse Regression Model

SHEN Yuan-yuan,  CAO Wen-fei,  HAN Guo-dong   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119
  • Received:2017-10-20 Accepted:2018-05-04 Online:2020-04-15 Published:2020-06-15
  • Supported by:
    The National Natural Science Foundation of China (61603235); the Fundamental Research Funds for the Central Universities (GK201503016); the Natural Science Foundation of Shaanxi Province (2018JQ1032).

摘要: 在工程应用中,如数据挖掘、成本预测以及风险预测等,Logistic 回归是一类十分重要的预测方法.当前,大部分 Logistic 回归方法都是基于优化准则而设计,这类回归方法具有参数调试过程繁琐、模型解释性差、估计子没有置信区间等缺点.本文从 Bayes 概率角度研究 Logistic 组稀疏性回归的建模与推断问题.具体来说,首先利用高斯-方差混合公式提出 Logistic 组稀疏回归的 Bayes 概率模型;其次,通过变分 Bayes 方法设计出一个高效的推断算法.在模拟数据上的实验结果表明,本文所提出的方法具有较好的预测性能.

关键词: Bayes 方法, 组稀疏, 变分推断, Logistic 回归模型

Abstract: In engineering applications, such as data mining, cost prediction, risk prediction etc., Logistic regression is a class of very important prediction methods. Presently, most of Logistic regression methods are designed based on optimization criteria, and these methods have several shortcomings such as tedious parameter tuning, poor model interpretation, and with the estimator no confidence interval. Therefore, we study the modeling and inference problem of Logistic group sparse regression from the perspective of Bayesian probability in this paper. Specifically, a Bayesian probability model of Logistic group sparse regression is firstly proposed by using the Gaussian-variance mixture formula. Then, an efficient inference algorithm is designed through the variational Bayesian method. Numerical results on simulated data show that the proposed method has better prediction performance.

Key words: Bayesian method, group sparse, variational inference, Logistic regression model

中图分类号: