在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2020, Vol. 37 ›› Issue (2): 245-259.doi: 10.3969/j.issn.1005-3085.2020.02.009

• • 上一篇    

基于节点度和社区信息的复杂网络链接预测

邓亚景1,  张  海1,2,  郭  骁1,  勾  明1,  王  尧3   

  1. 1- 西北大学数学学院,西安  710127
    2- 澳门科技大学信息技术学院,澳门  999078
    3- 西安交通大学数学与统计学院,西安  710049
  • 收稿日期:2017-11-21 接受日期:2018-05-09 出版日期:2020-04-15 发布日期:2020-06-15
  • 通讯作者: 张 海 E-mail: zhanghai@nwu.edu.cn
  • 基金资助:
    国家自然科学基金(11571011; 11501440; 61273020).

Link Prediction in Complex Networks Incorporating the Degree and Community Information

DENG Ya-jing1,  ZHANG Hai1,2,  GUO Xiao1,  GOU Ming1,  WANG Yao3   

  1. 1- School of Mathematics, Northwest University, Xi'an 710127
    2- Faculty of Information Technology, Macau University of Science and Technology, Macau 999078
    3- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049
  • Received:2017-11-21 Accepted:2018-05-09 Online:2020-04-15 Published:2020-06-15
  • Contact: H. Zhang. E-mail address: zhanghai@nwu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China (11571011; 11501440; 61273020).

摘要: 网络结构信息被广泛用于研究复杂网络的链接预测问题,本文在信息理论模型的基础上,通过结合不同的网络结构特征,提出了更通用的信息理论模型.对于无标度网络,通过抑制度大的邻居节点的贡献,提出基于节点度信息的邻居集信息(NSI)指标.进一步,引入社区结构信息计算节点对连接的先验概率,提出基于社区结构特征的邻居集信息指标.在真实网络上的实验结果表明,本文所提出的指标具有更好的预测效果.

关键词: 链接预测, 无标度, 社区结构, 信息熵

Abstract: Recently the structural features of networks are widely used to the link prediction problem. Based on the information-theoretic model, we propose a more general information-theoretic model by encoding various network structural information. Specifically, for the scale-free networks, a set of Neighbor Set Information (NSI) based indices by suppressing the contribution of high-degree neighbors are proposed. Secondly, to incorporate the community information, this paper further presents a set of NSI based indices in which the prior probability of a node pair being connected is encodes the community information of networks. The experimental results on a series of real networks show that our methods outperform other classical link prediction indices.

Key words: link prediction, scale-free, network community, information entropy

中图分类号: