工程数学学报
• • 上一篇 下一篇
张宏波, 彭培让
收稿日期:
接受日期:
出版日期:
发布日期:
基金资助:
ZHANG Hong-bo, PENG Pei-rang
Received:
Accepted:
Online:
Published:
Supported by:
摘要: 本文研究Geo/Geo/1多重工作休假排队系统.首先,应用GI/M/1型Markov链给出了该排队问题的一个新数学模型.其次,应用矩阵解析方法对模型求解,不但得到了排队模型平稳队长分布的具体形式,还给出了平稳状态时服务台具体处于第几次工作休假的概率.这些关于服务台状态更为精确的描述是该模型的新结果.最后用数值例子说明了分析方法的有效性.
关键词: Geo/Geo/1排队, 工作休假, GI/M/1型Markov过程, 矩阵几何解, 差分方程
Abstract: In this paper, the classical Geo/Geo/1 queueing system is investigated. First of all, a new GI/M/1 type Markov Chain model for the queue is proposed. Moreover, by using the matrix analytic method, the joint stationary distribution for the Markov chain is given, the results enable us not only obtain an explicit expression for the stationary queue length distribution of the queueing system, but also give the probability of the exact number of vacations that the sever has taken. Such accurate descriptions for the status of the server are new results for the queueing model. Finally, numerical examples are demonstrated to illustrate the effectiveness of the results.
Key words: Geo/Geo/1 queue, working vacation, GI/M/1 type Markov process, matrix geometric solution, difference equation
中图分类号:
O226
张宏波, 彭培让. 基于GI/M/1型Markov过程的Geo/Geo/1多重工作休假排队系统分析[J]. 工程数学学报, doi: 10.3969/j.issn.1005-3085.2021.03.005.
ZHANG Hong-bo, PENG Pei-rang. An Analysis for Geo/Geo/1 Queue with Multiple Working Vacations Based on GI/M/1 Type Markov Process[J]. Chinese Journal of Engineering Mathematics, doi: 10.3969/j.issn.1005-3085.2021.03.005.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: http://jgsx-csiam.org.cn/CN/10.3969/j.issn.1005-3085.2021.03.005
http://jgsx-csiam.org.cn/CN/Y2021/V38/I3/353