在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2025, Vol. 42 ›› Issue (3): 490-508.doi: 10.3969/j.issn.1005-3085.2025.03.007doi: 32411.14.1005-3085.2025.03.007

• • 上一篇    下一篇

基于深度学习的隐函数点云表面重建方法

胡  鑫,   何晓谊,   孙  剑   

  1. 西安交通大学数学与统计学院,西安  710049
  • 收稿日期:2025-01-15 接受日期:2025-03-15 出版日期:2025-06-15 发布日期:2025-06-15
  • 通讯作者: 孙剑 E-mail: jiansun@xjtu.edu.cn
  • 基金资助:
    国家自然科学基金 (12426313; 12326615);广东省重点领域研发计划 (2022B0303020003).

Deep Learning Based Point Cloud Surface Reconstruction Using the Implicit Function

HU Xin,   HE Xiaoyi,   SUN Jian   

  1. School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049
  • Received:2025-01-15 Accepted:2025-03-15 Online:2025-06-15 Published:2025-06-15
  • Contact: J. Sun. E-mail address: jiansun@xjtu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China (12426313; 12326615); the Research and Development Plan of Key Areas in Guangdong Province (2022B0303020003).

摘要:

随着三维扫描和点云数据处理技术的迅速发展,点云表面重建已成为计算机图形学与计算机视觉领域的重要研究方向。点云表面重建旨在从离散、不规则分布的点云数据中恢复物体或场景的连续表面。近年来,隐函数方法因其良好的鲁棒性与灵活性备受瞩目,特别是深度学习的引入,显著提升了其对复杂几何的重建性能。在此背景下,隐函数用于点云表面重建的研究成果不断涌现,使得追踪和把握其全貌愈加困难,因此迫切需要综述性文献梳理其基本原理、关键技术和发展脉络。鉴于此,首先回顾隐函数在点云表面重建中的基本原理和发展历程,随后从隐函数定义、隐函数类型、技术发展、损失函数、数据集、评价指标六个方面,对现有基于隐函数的点云表面重建方法展开系统性综述。最后,总结了该领域面临的关键挑战,如低质量点云处理、表面重建实时性以及序列点云重建问题,并展望了未来的研究方向。综述期望为从事点云重建及相关领域研究的学者提供全面的技术总结,助力其深入了解领域动态、高效定位前沿问题。

关键词: 深度学习, 隐函数, 点云, 表面重建

Abstract:

With the rapid development of 3D scanning and processing technologies, point cloud surface reconstruction has become a significant research focus in the fields of computer graphics and computer vision. The goal of point cloud surface reconstruction is to recover a continuous surface of an object or scene from discrete and irregular point cloud. In recent years, implicit function has gained increasing attention for their robustness and flexibility. Notably, the introduction of deep learning has significantly improved their performance in reconstructing complex geometries. A growing body of research on the application of implicit functions for point cloud surface reconstruction has emerged, making it increasingly challenging to track and understand the broader landscape. Therefore, there is an urgent need for a comprehensive review to summarize the fundamental principles, key techniques, and developmental trajectories of these methods. This paper first reviews the fundamental principles and historical development of implicit functions in point cloud surface reconstruction. It then systematically surveys existing methods from six perspectives: the definition of implicit functions, types of implicit functions, technological advancements, loss functions, datasets and evaluation metrics. Finally, the paper identifies critical challenges in this field, such as handling low-quality point clouds, ensuring real-time performance and addressing sequential point cloud reconstruction. It also provides an outlook on future research directions. This review aims to serve as a comprehensive technical reference for researchers engaged in point cloud reconstruction and related fields, helping them gain an in-depth understanding of the field's dynamics and efficiently identify frontier problems.

Key words: deep learning, implicit function, point cloud, surface reconstruction

中图分类号: