在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2017, Vol. 34 ›› Issue (4): 424-436.doi: 10.3969/j.issn.1005-3085.2017.04.009

• • 上一篇    下一篇

一类带有特异性免疫细胞钟形增殖率的慢性病毒感染模型的全局动力学性态(英)

李   佳,   李建全,   李益群   

  1. 空军工程大学理学院,西安  710051
  • 收稿日期:2016-06-12 接受日期:2016-12-01 出版日期:2017-08-15 发布日期:2017-10-15
  • 通讯作者: 李建全 E-mail: jianq_li@263.net
  • 基金资助:
    国家自然科学基金(11371369).

Global Dynamics of a Chronic Virus Infection Model with Bell-shaped Proliferation Rate of Specific Immune Cells

LI Jia,   LI Jian-quan,   LI Yi-qun   

  1. School of Science, Air Force Engineering University, Xi'an 710051
  • Received:2016-06-12 Accepted:2016-12-01 Online:2017-08-15 Published:2017-10-15
  • Contact: J. Li. E-mail address: jianq_li@263.net
  • Supported by:
    The National Natural Science Foundation of China (11371369).

摘要: 特异性免疫应答对控制宿主体内的病毒感染起着非常重要的作用.本文提出并研究了一类具有特异性免疫细胞钟形增殖率的慢性病毒感染模型.这里免疫细胞的钟形增殖意指当病毒载量足够大时其繁殖率会降低.病毒对免疫应答的损害也在本文的模型中被考虑.在找到该模型免疫应答基本再生数的同时,完整分析了其局部动力学行为.为了确定其全局动力学性态,应用中心流型理论对一些临界情形进行了分析,并通过构造适当的Dulac函数排除了该模型周期解的存在性.本文得到的结果显示在一定条件下模型会出现后向分支,这意味着模型的动力学性质会因初始状态的不同而改变.最后的数值模拟说明最终的单调和持续震荡对病毒种群和免疫应答都是有可能发生的.

关键词: 慢性病毒感染模型, 免疫应答, 净再生数, 动力学性态, 后向分支

Abstract: The specific immune response plays a very important role in controlling the viral infection within host. A chronic virus infection model with bell-shaped proliferation rate of specific immune cells is proposed and investigated in this paper, where the bell-shaped expansion implies that the proliferation rate of immune cells could decrease when the virus load is sufficiently large. The impairment of virus on immune response is also incorporated in the model. For the model, the net reproduction number of the immune response with virus impairment is found, and the local dynamical behaviors are demonstrated completely. In order to determine the global dynamics, the center manifold theory is applied for some critical situations, and we also construct the suitable Dulac function to rule out the existence of perio-dic solutions. The obtained results in this paper show that the backward bifurcation may occur under certain conditions, which reflects the dependence of dynamics of the model on the initial conditions. Finally, the numerical simulation also suggests that both eventual monotonicity and sustained oscillation of viral population and immune response are possible for the model.

Key words: chronic virus infection model, immune response, net reproduction number, dynamical behaviors, backward bifurcation

中图分类号: