在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2017, Vol. 34 ›› Issue (2): 182-198.doi: 10.3969/j.issn.1005-3085.2017.02.007

• • 上一篇    下一篇

具有三物种的食饵-捕食反应扩散时滞系统的稳定性与行波解(英)

李成林   

  1. 红河学院数学学院,云南 蒙自 661199
  • 收稿日期:2015-12-09 接受日期:2016-05-04 出版日期:2017-04-15 发布日期:2017-06-15
  • 基金资助:
    国家自然科学基金(11461023);红河学院博士科研基金资助项目(14bs19).

Stability and Traveling Fronts of a Three-species Diffusive Prey-predator System with Delays

LI Cheng-lin   

  1. College of Mathematics, Honghe University, Mengzi, Yunnan 661199
  • Received:2015-12-09 Accepted:2016-05-04 Online:2017-04-15 Published:2017-06-15
  • Supported by:
    The National Natural Science Foundation of China (11461023); the Research Funds of Ph.D. for Honghe University (14bs19).

摘要: 本文研究了在有界区域上带有Neumann边界条件的反应扩散三物种食饵-捕食时滞系统.利用特征值方法和Lyapunov函数找到了该系统平衡点稳定的充分条件,该条件说明时滞限制了稳定性.稳定性中的主要一个结论是当食饵和捕食者间的种内竞争大于种间竞争时正平衡点是全局渐近稳定的.进一步,通过构建上下解证明了当波速相对大时该系统具有连接零平衡点和正平衡点的行波解.

关键词: 稳定性, 时滞, 行波解

Abstract: This paper is concerned with a three-species delayed reaction-diffusion predator-prey system in a bounded domain with Neumann boundary condition. The sufficient conditions of stability are found for equilibria of this system by the method of eigenvalue and Lyapunov function, and these conditions imply that delays often restrain stability. One of the main results about stabilities shows that if the intra-specific competitions of the predator and preys dominate their inter-specific interaction, then the positive equilibria are globally stable. Furthermore, the existence of the traveling wavefront is considered by constructing upper-lower solution and it is derived that this system always has a traveling wave solution connecting the trivial steady state and the positive steady state when the wave speed is relatively big.

Key words: stability, delay, traveling waves

中图分类号: