在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2019, Vol. 36 ›› Issue (2): 198-218.doi: 10.3969/j.issn.1005-3085.2019.02.007

• • 上一篇    下一篇

具有二次目标函数的多阶段随机规划问题的稳定性研究(英)

蒋   杰,   陈志平   

  1. 西安交通大学数学与统计学院,西安  710049
  • 收稿日期:2018-11-06 接受日期:2019-02-25 出版日期:2019-04-15 发布日期:2019-06-15
  • 基金资助:
    国家自然科学基金(11571270);世界一流大学与中央高校特色发展引导基金(PY3A058).

Stability of Multistage Stochastic Programs with Quadratic Objective Functions

JIANG Jie,   CHEN Zhi-ping   

  1. School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049
  • Received:2018-11-06 Accepted:2019-02-25 Online:2019-04-15 Published:2019-06-15
  • Supported by:
    The National Natural Science Foundation of China (11571270); the World-Class Universities and the Characteristic Development Guidance Funds for the Central Universities (PY3A058).

摘要: 多阶段随机规划可恰当描述不确定环境下的复杂长期决策问题.本文研究带有二次目标函数的多阶段随机规划问题在随机过程扰动下的定量稳定性,推广了现有线性目标函数情形下的结果.为此,我们首先根据参数规划的相关理论导出了可行解的上界.为了得到补偿函数的Lipschitz连续性,我们假设了Fortet-Mourier度量下随机过程各阶段条件分布下的连续性.在这些准备工作的基础上,我们最终建立了最优值函数的Lipschitz连续性结论.我们的定量稳定性结果推广了已有的线性结果,并不依赖于多阶段随机规划稳定性分析中难以计算的滤波距离.

关键词: 多阶段随机规划, 二次目标函数, 定量稳定性, Lipschitz连续性

Abstract: Multistage stochastic programs can properly describe complex long-term decision-making problems under uncertainty. We study the quantitative stability of multistage stochastic programs with quadratic objective functions under perturbations of the underlying stochastic processes, which extend the current results for the linear objective functions. We first derive the upper bounds of feasible solutions through parametric programming theories. In order to obtain the Lipschitz continuities of recourse functions, we assume the continuity of the conditional distributions under the Fortet-Mourier metric. With these preparations, we finally establish the Lipschitz continuity of the optimal value function. Our quantitative stability results do not rely on the filtration distance.

Key words: multistage stochastic programming,  , quadratic objective function,  , quantitative stability, Lipschitz continuity

中图分类号: