工程数学学报 ›› 2019, Vol. 36 ›› Issue (2): 187-197.doi: 10.3969/j.issn.1005-3085.2019.02.006
牛建华, 王川龙
NIU Jian-hua, WANG Chuan-long
摘要: 增广Lagrange乘子算法是求解矩阵压缩恢复的一种有效迭代方法.为了有效求解Toeplitz矩阵压缩恢复模型,本文提出了两种中值修正的增广Lagrange乘子算法.在新算法中,对增广Lagrange乘子算法每步产生的迭代矩阵进行中值修正并保证其Toeplitz结构.新算法不仅减少了奇异值分解所用的时间和CPU时间,而且获得更精确的迭代矩阵.同时,本中还详细给出了两种新算法的收敛性分析.最后通过数值例子验证了新算法的可行性和有效性,并展示了新算法在计算时间和精度方面比增广Lagrange乘子算法更有优势.
中图分类号: