在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2019, Vol. 36 ›› Issue (2): 187-197.doi: 10.3969/j.issn.1005-3085.2019.02.006

• • 上一篇    下一篇

Toeplitz矩阵压缩恢复的两种中值修正的增广Lagrange乘子算法

牛建华,   王川龙   

  1. 太原师范学院工程科学计算山西省高等学校重点实验室,晋中  030619
  • 收稿日期:2018-01-19 接受日期:2018-10-09 出版日期:2019-04-15 发布日期:2019-06-15
  • 通讯作者: 王川龙 E-mail: clwang1964@163.com
  • 基金资助:
    国家自然科学基金(11371275);山西省自然科学基金(201601D011004).

Two Modified Augmented Lagrange Multiplier Algorithms with Median Value Toeplitz Matrix Compressive Recovery

NIU Jian-hua,   WANG Chuan-long   

  1. Higher Education Key Laboratory of Engineering and Scientific Computing in Shanxi Province, Taiyuan Normal University, Jinzhong 030619
  • Received:2018-01-19 Accepted:2018-10-09 Online:2019-04-15 Published:2019-06-15
  • Contact: C. Wang. E-mail address: clwang1964@163.com
  • Supported by:
    The National Natural Science Foundation of China (11371275); the Natural Science Foundation of Shanxi Province (201601D011004).

摘要: 增广Lagrange乘子算法是求解矩阵压缩恢复的一种有效迭代方法.为了有效求解Toeplitz矩阵压缩恢复模型,本文提出了两种中值修正的增广Lagrange乘子算法.在新算法中,对增广Lagrange乘子算法每步产生的迭代矩阵进行中值修正并保证其Toeplitz结构.新算法不仅减少了奇异值分解所用的时间和CPU时间,而且获得更精确的迭代矩阵.同时,本中还详细给出了两种新算法的收敛性分析.最后通过数值例子验证了新算法的可行性和有效性,并展示了新算法在计算时间和精度方面比增广Lagrange乘子算法更有优势.

关键词: 压缩恢复, Toeplitz矩阵, 增广Lagrange乘子算法

Abstract: The augmented Lagrange multiplier algorithm is an effective iteration method for solving matrix compressive recovery. To solve the Toeplitz matrix compressive recovery model effectively, two modified augmented Lagrange multiplier algorithms with median value are proposed in this paper. In the new algorithms, the iterated matrix generated by the augmented Lagrange multiplier algorithm is modified by median value and its Toeplitz structure is guaranteed. The new algorithms not only reduce the SVD time and CPU time, but also obtain a more accurate iterative matrix. Meanwhile, the convergence analysis of the two new algorithms are also given in detail. Finally, the numerical examples are presented to confirm their feasibility and effectiveness. The numerical implementations also show that the new algorithms have advantage over the augmented Lagrange multiplier algorithm in computation time and accuracy.

Key words: compressive recovery, Toeplitz matrix, augmented Lagrange multiplier algorithm

中图分类号: