摘要: 本文给出了 Rosenau-Burgers 方程的两种修正局部 Crank-Nicolson 格式.首先,求解原有的偏微分方程对空间方向进行有限差分离散而得到的常微分方程.其次,利用矩阵分裂技术对这个方程的指数系数矩阵分别按行和元素进行逼近.最后,利用修正局部 Crank-Nicolson 方法得到了两种格式.讨论了格式的稳定性、收敛性和先验误差估计.数值实验结果表明了理论证明的正确性及格式的有效性.该格式具有结构简单、精度高的优点.
中图分类号:
穆耶赛尔﹒艾合麦提, 阿布都热西提﹒阿布都外力, 阿不都艾尼﹒阿不都西库尔. Rosenau-Burgers 方程的修正局部 Crank-Nicolson 格式[J]. 工程数学学报, 2020, 37(2): 231-244.
Muyassar Ahmat, Abdurishit Abduwal, Abdugeni Abduxkur. The Modified Local Crank-Nicolson Schemes for Rosenau-Burgers Equation[J]. Chinese Journal of Engineering Mathematics, 2020, 37(2): 231-244.