工程数学学报 ›› 2020, Vol. 37 ›› Issue (6): 719-729.doi: 10.3969/j.issn.1005-3085.2020.06.006
兰 斌1,2, 王 涛1
LAN Bin1,2, WANG Tao1
摘要: 对流扩散方程广泛存在于很多领域,为适应一些实际问题模型的求解,对离散格式,不仅要求满足一些基本性质,如稳定性和解的存在唯一性等,还要求离散格式的保正性.采用有限体积格式求解对流扩散方程的工作较少,但在保正性方面所做的工作不多.本文构造了任意非等距网格上一维对流扩散方程的非线性保正有限体积格式.其中,扩散通量的离散,在等距网格上,当扩散系数为标量时可退化为标准的二阶中心差分格式.而对流通量的离散,为避免数值振荡而使其保持迎风特性,提出一种新的方法使格式精度提高到二阶.该方法在上游单元中心处作泰勒级数展开,通过相关辅助未知量来完成梯度的重构,并对出负情形作正性校正,使得格式满足保正性要求.新格式只含有区间单元中心未知量,并满足区间端点处通量的局部守恒性.数值结果表明,本文所提格式是有效的,对于处理扩散占优、对流占优问题,扩散系数连续和间断情形均具有良好的适应性,并且保持二阶精度.另外,新格式适用于扩散系数间断问题的求解.
中图分类号: