摘要:
谱共轭梯度法是共轭梯度法的一种重要延拓,可以通过共轭参数和谱参数二维度调整,使得所设计算法的搜索方向满足某一预设条件,比如充分下降条件或共轭条件等。谱参数和共轭参数的设计是谱共轭梯度法的两大核心工作,决定方法的收敛性和数值效果。基于 PRP 方法,构造了一个修正的 PRP 型共轭参数,该共轭参数不仅保持了 PRP 公式的结构和性能,而且具有 FR 方法的收敛性质。利用充分下降条件取定一个谱参数,与修正的 PRP 型共轭参数结合,建立一个新的谱共轭梯度算法。该算法不依赖于任何线搜索就可以满足充分下降条件。常规假设条件下,采用强 Wolfe 线搜索准则产生步长,证明了新算法的全局敛性。通过 100 个算例对该算法进行数值测试并与其他五个算法进行比较,同时采用性能图对数值结果进行直观展示,结果表明该算法是有效的。
中图分类号:
简金宝, 宋 丹, 江羡珍. 一个充分下降的修正 PRP 型谱共轭梯度法[J]. 工程数学学报, 2022, 39(2): 265-276.
JIAN Jinbao, SONG Dan, JIANG Xianzhen. A Modified PRP Type Spectral Conjugate Gradient Method with Sufficient Descent Property[J]. Chinese Journal of Engineering Mathematics, 2022, 39(2): 265-276.