在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2019, Vol. 36 ›› Issue (5): 535-550.doi: 10.3969/j.issn.1005-3085.2019.05.005

• • 上一篇    下一篇

时间分数阶扩散方程的一种交替分带并行差分方法

杨晓忠,  吴立飞   

  1. 华北电力大学数理学院,北京  102206
  • 收稿日期:2017-08-04 接受日期:2017-12-01 出版日期:2019-10-15 发布日期:2019-12-15
  • 通讯作者: 吴立飞 E-mail: wulf@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金(11371135);中央高校基本科研业务费专项资金(2018MS168).

An Alternating Band Parallel Difference Method for Time Fractional Diffusion Equation

YANG Xiao-zhong,  WU Li-fei   

  1. School of Mathematics and Physics, North China Electric Power University, Beijing 102206
  • Received:2017-08-04 Accepted:2017-12-01 Online:2019-10-15 Published:2019-12-15
  • Contact: L. Wu. E-mail address: wulf@ncepu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China (11371135); the Fundamental Research Funds for the Central Universities (2018MS168).

摘要: 分数阶反常扩散方程具有深刻的物理背景和丰富的理论内涵,其数值解法的研究具有重要的科学意义和工程应用价值.针对二维时间分数阶反常扩散方程,本文研究一种交替分带 Crank-Nicolson 差分的并行计算方法(ABdC-N 方法).该格式是在交替分带技术的基础上,结合经典显式、隐式和 Crank-Nicolson 差分格式构造而成.理论分析和数值试验表明,ABdC-N 方法是无条件稳定和收敛的,具有良好的计算精度和并行计算性质,并且计算效率远优于经典的串行差分方法,证实本文 ABdC-N 差分方法求解二维时间分数阶反常扩散方程是有效的.

关键词: 二维时间分数阶扩散方程, 交替分带 Crank-Nicolson 差分格式, 稳定性;并行计算;数值实验

Abstract: The fractional anomalous diffusion equation has profound physical background and rich theoretical connotation, and its numerical methods are of important scientific significance and engineering application value. For the two-dimensional time fractional anomalous diffusion equation, an alternating band Crank-Nicolson difference parallel computing method (ABdC-N method) is studied in this paper. Based on the alternating segment technology, the ABdC-N scheme is constructed from the classic explicit scheme, implicit scheme and Crank-Nicolson difference scheme. It can be seen from both theoretical analyses and numerical experiments that the ABdC-N method is unconditionally stable and convergent. This method has good characteristics of parallel computing, and its computation efficiency is much higher than the classical serial differential method. Our results thus show that the ABdC-N difference method is effective for solving the two-dimensional time fractional anomalous diffusion equation.

Key words: two-dimensional time fractional diffusion equation, alternating band Crank-Nicolson difference scheme, stability, parallel computation, numerical experiments

中图分类号: