在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2024, Vol. 41 ›› Issue (2): 365-376.doi: 10.3969/j.issn.1005-3085.2024.02.011

• • 上一篇    下一篇

柏拉图–伽马模型下尾在险价值度量的贝叶斯估计的渐近行为及其应用

严  钧,  陈允洁   

  1. 扬州大学数学科学学院,扬州 225002
  • 收稿日期:2021-08-24 接受日期:2022-08-12 出版日期:2024-04-15 发布日期:2024-06-15
  • 基金资助:
    国家自然科学基金 (71971190).

Asymptotic Behaviors and Their Applications of the Bayesian Estimators of Tail Value at Risk on Pareto-Gamma Model

YAN Jun,  CHEN Yunjie   

  1. School of Mathematical Science, Yangzhou University, Yangzhou 225002
  • Received:2021-08-24 Accepted:2022-08-12 Online:2024-04-15 Published:2024-06-15
  • Supported by:
    The National Natural Science Foundation of China (71971190).

摘要:

针对柏拉图–伽马风险模型的尾在险价值度量的贝叶斯估计量的渐近行为进行研究有助于对风险度量进行统计推断,以便于风险投资者及时采取相应措施规避风险。首先,通过构造柏拉图–伽马模型的贝叶斯假设,给出了尾在险价值度量的贝叶斯估计量,并利用经典的大偏差和中偏差理论,以及Delta方法得到了尾在险价值度量的贝叶斯估计量的渐近行为,包括渐近正态性、大偏差原理和中偏差原理;其次,给出了尾在险价值度量的贝叶斯估计量的中偏差原理在统计假设检验方面的具体应用,得到了第一类错误和势函数的渐近行为;最后,通过数值模拟的方法,计算并模拟了尾在险价值的置信区间及其区间覆盖率,并在不同样本容量下画出了尾在险价值度量的贝叶斯估计量标准化后的直方图和核密度估计曲线,这与标准正态分布密度函数曲线基本重合,从而验证了估计量的渐近正态性,同时还模拟了尾在险价值度量的贝叶斯估计量相关的尾概率,模拟结果表明样本容量充分大时,尾概率以一定的速度趋近于零,由此验证了估计量的中偏差原理。

关键词: 尾在险价值, 贝叶斯估计, 中心极限定理, 大偏差原理, 中偏差原理

Abstract:

The asymptotic behaviors and applications of the Bayesian estimator for the tail value at risk on Pareto-Gamma risk model is helpful to make statistical inference on risk measure, so that venture investors can take corresponding measures to avoid risks in time. Firstly, by constructing Bayesian hypothesis of Pareto-Gamma risk model, the Bayesian estimator for tail value at risk is given, then by using classical large deviation theory, moderate deviation theory and Delta method, the asymptotic behaviors of the Bayesian estimator for tail value at risk is given out, including the asymptotic normality, large deviation principle and moderate deviation principle. Secondly, the specific applications of the moderate deviation principle of the Bayesian estimator for tail value at risk in statistical hypothesis testing are given, and the asymptotic behaviors of the type I error and power function are obtained. Finally, the simulation methods are given to investigate the confidence interval and interval coverage of the tail value at risk, and the standardized histogram and kernel density estimation curve of the Bayesian estimator of tail value at risk are drawn for different sample sizes, which basically coincide with the standard normal distribution density function curve, thus the asymptotic normality of the estimator is verified. At the same time, the stochastic simulation of the tail probability of the tail value at risk is given to show that the tail probability approaches zero at a certain speed when the sample size is sufficiently large, thus the moderate deviation principle of the estimator is verified.

Key words: tail value at risk, Bayesian estimation, central limit theorem, large deviation principle, moderate deviation principle

中图分类号: