在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2016, Vol. 33 ›› Issue (4): 349-368.doi: 10.3969/j.issn.1005-3085.2016.04.003

• • 上一篇    下一篇

基于多重有限体积法解决含有耗散项的双曲扩散问题

张丽剑1,  罗跃生2,  高  洋2   

  1. 1- 哈尔滨工程大学动力与能源工程学院,哈尔滨 150001
    2- 哈尔滨工程大学理学院,哈尔滨 150001
  • 收稿日期:2015-12-03 接受日期:2015-06-16 出版日期:2016-08-15 发布日期:2016-10-15
  • 基金资助:
    国家自然科学基金 (51206031; 51479038).

Solving Multiple Problems of Hyperbolic Diffusion with Dissipative Terms Based on Multiple Integral Finite Volume Method

ZHANG Li-jian1,  LUO Yue-sheng2,  GAO Yang2   

  1. 1- College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001
    2- College of Science, Harbin Engineering University, Harbin 150001
  • Received:2015-12-03 Accepted:2015-06-16 Online:2016-08-15 Published:2016-10-15
  • Supported by:
    The National Natural Science Foundation of China (51206031; 51479038).

摘要: 双曲扩散方程在数学上是一类重要的偏微分方程,在众多工程领域中有着广泛的应用.其常用于描述声波和电势场中电流的传播问题,也用于模拟计算流体力学中的对流扩散以及热传导模型.本文研究了一类具有耗散项的双曲扩散方程,并通过数值方法对其初边值问题进行求解.针对已有的有限体积法在求解该问题时精度无法提高的问题,本文基于变限积分的方法提出了新的高精度有限体积格式,并利用Fourier分析法得到其离散格式无条件稳定的结论,最后利用数值实验证实了理论分析结果.

关键词: 变限积分, 双曲扩散方程, 有限体积法

Abstract:

Hyperbolic diffusion equation is a class of important partial differential equation in mathematics, and has been widely used in many engineering fields. It is usually used to describe the propagation of acoustic waves and currently in potential field, and also used to simulate the models of convection diffusion and heat conduction in computational fluid dynamics. In this paper, we propose a multiple integral finite volume method to solve the multiple problems of hyperbolic diffusion with dissipative terms. It is difficult to improve accuracy for solving this problem with classical finite volume method. Therefore, we propose a new finite volume format based on the variable limit integral, which improves the capability of traditional methods. We use the Fourier analysis method to analyze the stability of the discrete format, and provide the priori estimation as well as convergence. Finally, numerical experiments confirm the correctness of the proposed theoretical results.

Key words: variable limit integral, hyperbolic diffusion equation, finite volume method

中图分类号: