在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2016, Vol. 33 ›› Issue (5): 450-462.doi: 10.3969/j.issn.1005-3085.2016.05.002

• • 上一篇    下一篇

一类具多比例时滞递归神经网络的全局指数稳定性

赵  宁,  周立群   

  1. 天津师范大学数学科学学院,天津 300387
  • 收稿日期:2015-05-05 接受日期:2015-11-20 出版日期:2016-10-05 发布日期:2016-12-15
  • 基金资助:
    国家自然科学基金 (61374009).

Global Exponential Stability of a Class of Recurrent Neural Networks with Multi-proportional Delays

ZHAO Ning,  ZHOU Li-qun   

  1. School of Mathematical Science, Tianjin Normal University, Tianjin 300387
  • Received:2015-05-05 Accepted:2015-11-20 Online:2016-10-05 Published:2016-12-15
  • Supported by:
    The National Natural Science Foundation of China (61374009).

摘要: 比例时滞是一种不同于常时滞、有界变时滞和分布时滞的时变无界时滞.具比例时滞的系统在物理学、生物学和控制理论等领域发挥着重要的作用,但目前具比例时滞神经网络的动力学行为研究相对较少.本文对一类具多比例时滞递归神经网络的全局指数稳定性进行研究.首先,利用非线性变换将一类具多比例时滞的递归神经网络等价变换成一类变系数常时滞的递归神经网络,然后利用$M$-矩阵理论和同胚映射定理,以及时滞微分不等式技巧,得到了该系统平衡点的存在性、唯一性及其全局指数稳定性的时滞无关的充分条件,该条件依赖于神经网络的连接权值矩阵和神经元的激励函数.最后数值实验结果验证所得结论的正确性和与以往文献相比较低的保守性.

关键词: 递归神经网络, 比例时滞, 全局指数稳定性, $M$-矩阵, 时滞微分不等式

Abstract: Proportional delay is an unbounded time-varying delay, which is different from constant delay, bounded time-varying delay and distributed delay. The proportional delay systems often play important roles in some fields such as physics, biology systems and control theory, but at present there are not much dynamics behavior research of neural networks with proportional delays. In this paper, the global exponential stability of a class of recurrent neural networks with multi-proportional delays is studied. Firstly, a class of recurrent neural networks with multi-proportional delays is transformed into the recurrent neural networks with constant delays and variable coefficients by the nonlinear transformation. Secondly, based on the properties of $M$-matrix, the homeomorphism mapping theorem, and the delay differential inequality technique, a delay-independent sufficient condition which ensures the existence, uniqueness and global exponential stability of the equilibrium point of such neural networks is confirmed. This condition depends on the connection weight matrix of neural networks and the activation function of neurons. Finally, the numerical examples verify that the theoretical results are effective and less conservative than previously existing results.

Key words: recurrent neural networks, proportional delays, global exponential stability, $M$-matrix, delay differential inequality

中图分类号: