在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2022, Vol. 39 ›› Issue (2): 224-236.doi: 10.3969/j.issn.1005-3085.2022.02.005

• • 上一篇    下一篇

一个捕食者染病、食饵具有阶段结构的生态 - 流行病模型的稳定性

张  梅,   王玲书,   贾美枝   

  1. 河北经贸大学数学与统计学学院,石家庄 050061
  • 出版日期:2022-04-15 发布日期:2022-06-15
  • 基金资助:
    河北省自然科学基金 (A2019207070); 河北经贸大学基金 (2021ZD07).

Stability of an Eco-epidemiological Model with Disease in the Predators and Stage-structure for the Prey

ZHANG Mei,   WANG Lingshu,   JIA Meizhi   

  1. School of Mathematics and Statistics, Hebei University of Economics & Business, Shijiazhuang 050061
  • Online:2022-04-15 Published:2022-06-15
  • Supported by:
    The Natural Science Foundation of Hebei Province (A2019207070); the Scientific Research Foundation of Hebei University of Economics and Business (2021ZD07).

摘要:

研究了一个捕食者染病且食饵具有阶段结构的生态 - 流行病模型的稳定性,考虑了捕食者对食饵的 Holling-II 型功能性反应函数,并讨论了由捕食者的妊娠期引起的时滞对模型稳定性的影响。通过计算特征方程的特征值,运用 Hurwitz 判定定理,得到了该模型的在平凡平衡点、捕食者灭绝平衡点、无病平衡点和正平衡点的局部稳定性,得到了正平衡点处存在 Hopf 分支的充分条件。通过构造 Lyapunov 泛函,运用 LaSall 不变集原理得到了该模型的平凡平衡点、捕食者灭绝平衡点、无病平衡点和正平衡点全局稳定的充分条件。

关键词: 生态 - 流行病模型, 稳定性, 阶段结构, 时滞

Abstract:

An eco-epidemiological model with disease in the predator and stage-structure for the prey is analyzed. The Holling type-II functional response and a time delay due to the gestation of the predator are considered in this model. By analyzing the corresponding characteristic equations, the local stability of the trivial equilibrium, the predator-extinction equilibrium, the disease free equilibrium and the positive equilibrium are discussed, respectively. The existence of Hopf bifurcations at the positive equilibrium is established. By using Lyapunov functionals and LaSalle's invariance principle, sufficient conditions are obtained for the global stability of the trivial equilibrium, the predator-extinction equilibrium, the disease free equilibrium and the positive equilibrium, respectively.

Key words: eco-epidemiological model, stability, stage-structure, time delay

中图分类号: