在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2021, Vol. 38 ›› Issue (2): 214-228.doi: 10.3969/j.issn.1005-3085.2021.02.006

• • 上一篇    下一篇

一类具有两阶段结构同类相食模型的动力学分析

朱   雪,   蔺小林,   李建全   

  1. 陕西科技大学文理学院,西安  710021
  • 收稿日期:2018-12-03 接受日期:2019-06-05 出版日期:2021-04-15 发布日期:2022-11-08
  • 通讯作者: 李建全 E-mail: jianq_li@263.net
  • 基金资助:
    国家自然科学基金 (11971281; 12071268);陕西科技大学学术团队项目 (2013XSD39).

A Dynamic Analysis of Cannibalism Model with Two-stage Structure

ZHU Xue,   LIN Xiao-lin,   LI Jian-quan   

  1. School of Arts and Sciences, Shaanxi University of Science and Technology, Xi'an 710021
  • Received:2018-12-03 Accepted:2019-06-05 Online:2021-04-15 Published:2022-11-08
  • Contact: J. Li. E-mail address: jianq_li@263.net
  • Supported by:
    The National Natural Science Foundation of China (11971281; 12071268); the Academic Team Project of Shaanxi University of Science and Technology (2013XSD39).

摘要: 本文在假定成年个体会对幼年个体进行同类捕食和考虑幼年个体自然死亡的基础上,建立了一类具有两阶段结构的同类相食模型.当种群不存在同类捕食时,通过构造Lyapunov函数分别得到了种群灭绝平衡点和种群存活平衡点的全局渐近稳定的条件.对于种群存在同类捕食的情形,发现模型会同时存在两个种群存活平衡点和发生鞍结点分支,并通过构造Dulac函数排除周期解的存在性,得到模型的全局动力学性态.种群存活的两个平衡点的存在和鞍结点分支的发生意味着种群发展的最终状态会依赖于模型的初始条件.所得理论结果均得到了数值模拟的验证.

关键词: 同类相食, 平衡点, 稳定性, 鞍结点分支

Abstract: Based on the assumptions that the adult could kill and eat the juvenile of the same species and that there is the natural death of the juvenile, a two-stage-structured model with cannibalism is proposed in this paper. In the absence of cannibalism, the conditions ensuring the global stabilities of the population extinction and survival equilibria of the model are obtained by constructing the corresponding Lyapunov functions. In the presence of cannibalism, it is found that the model may have two population survival equilibria and that the saddle-node bifurcation can occur for certain parameter region, and the global dynamics is determined by constructing the Dulac function to rule out the existence of periodic solutions. The existence of two positive equilibria and the occurrence of the saddle-node bifurcation imply that the final state of the population growth depends on the initial condition of the model. The theoretic results obtained are verified by numerical simulation.

Key words: cannibalism, equilibrium, stability, saddle-node bifurcation

中图分类号: